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1. Numerical-analytical model of penetration of long elastically deformable projectiles into 

semi-infinite targets 

Introduction 
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Penetration of non-deformable projectiles in continuum with various rheological properties has been of 
interest to researchers for a long time. The first modeling representations of penetration were formulated in 
XVIII-XIX centuries in Euler's, Poncelet's, Wuich's works, etc. Analysis of these results can be found in A.J. 
Sagomonjan's monographs [ l ,2]. 

In conjunction with development of more exact and effective technical means in last two decades the 
interest to this problem has considerably increased, and this is proved by works of Voejkova and Sagomonjan 
(1985) [3], Alojan (1985) [4], Liapykhin et al. (1993) [5], Bahrah et al. (1992) [6], Forrestal et al. (1988) [7], 
(1992) [8], (2000) [9], Dikshit and Sundararajan (1992) [10], Piekutowski et al. (1999) [ll], Warren and 
Forrestal (1998) [12], Warren (2000) [13], Yossifon et al. (2001) [14], Chen and Li (2002) [15]. 

The analysis of modern state of the problem of analytical modeling of high-velocity penetration of non­
deformable projectiles in target can be found in works by Forrestal et al. [7-9], Warren and Forrestal [12], Yarin 
et al. [ 16,17], Y ossifon [ 14 ], Chen and Li [ 15]. From this analysis follows that at present there is a deficiency of 
relatively simple analytical models using natural physical and geometrical parameters of projectile and target 
and with a small number of fitting parameters. 

In this study we have built and investigated a new model of penetration of non-deformable projectiles of 
various shapes in elastic-plastic and elastic-brittle materials. 

The closest to the proposed model are models by Yarin et al. [ 16], Roisman et al. [ 17], Y ossifon et al. 
[ 14] which use the method of peculiarities where equations of motion in elastic-plastic medium have a form of 
the Cauchy problem: 

(m+A(x,X))x=B(x,x)x2 +C(x,x), x(O) = 0, x(O) =-U0. (l) 

Here U0 > 0- initial projectile velocity, m- its mass, x(t) -location of the tip of the projectile, and 
functions A, B, C have natural mechanical meaning (A - target added mass, B - drag coefficient, C- drag 
associated with plasticity). These functions are found analytically on the base of approximate solution of motion 
equations of elastic-plastic medium with appropriate boundary conditions. Equations ( l) use exact velocity 
potential of ideal fluid in infinite domain for a projectile which shape is an ovoid of Rankine. 

The comparison of full penetration depth of long non-deformable projectile, determined by our model 
for different velocities of impact with known experimental data shows that the experimental values of 
penetration depth appear less than theoretical ones. Similar results are demonstrated by the model suggested in 
[7 ,8] and based on a use of velocity field in material at expansion of spherical cavity. To adjust the theoretical 
results to experimental ones the authors in these works use a friction coefficient. Later, on the basis of the 
analysis of FEM-based calculations and experimental data [ 12], they neglect the influence of friction on 
penetration depth and develop the model that accounts for deformation rate in rheological equations of target 
material. Analyzing the influence of hardness of projectile material on experimental values of penetration depth 
in work [9] it is noted that harder projectiles have a slightly higher penetration depth than less hard ones. 
However, all experimental values of penetration depths are lower than theoretical depths for hard projectiles. 

These facts led us to the necessity to take into account other possible effects, in particular, elastic 
deformation of projectile. In present study we investigate in uniaxial approximation the influence of forced 
elastic oscillations of projectile on key parameters of penetration process (penetration depth and velocity). It is 
shown, that elastic oscillations of projectile (usually neglected) have noticeable influence on penetration. 

We also evaluate a critical velocity of impact at which the projectile undergoes plastic deformation 
causing irreversible changes of its shape and instability of its movement. The investigation of rigid-body motion 
and further analysis of forced elastic oscillations deals with impact velocities less then this critical velocity. 

The main purpose of the present modeling investigation is: 
- to build motion equations on the basis of velocity field in the target determined by a real projectile 

shape; 
- to obtain deeper insight into the nature of target resistance to penetration of non-deformable and 

elastically deformable projectiles; 
-to predict the dependence of projectile velocity vs. given geometrical and material parameters of projectile 

and target; 
-to investigate the influence of projectile shape and its elastic oscillations on penetration; 
- to compare results of model predictions with known experimental and calculated results. 
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1. Basic model equations of penetration of non-deformable projectiles into semi-infinite target 

1.1. Geometrical scheme of penetration model of non-deformable projectile 
Let's consider a normal penetration of axisymmetric projectile in semi-infinite target (see Fig.l ). 
In Fig. l we accept the following notations and assumptions: a 1 -lateral surface of projectile (i.e. 

projectile surface without its rear surface), a 2 = {x = 0, r?:. d/2} -target free surface (assumed flat), a 3 = {0 :s; x 

:s; (P- L), r = d/2}- free surface of entry hole (assumed cylindrical). The direction of projectile motion 
coincides with axis x which is its axis of symmetry. At P :s; L surface a3 is absent. 

t 

Main model parameters are: u(t)- projectile velocity; L- projectile length; P(t) = J u ( T )dr 
0 

penetration depth; d- projectile diameter; U,- striking (impact) velocity. 

Fig. 1 Scheme of normal penetration of axisymmetric elongated non-deformable projectile in cylindrical system 
of coordinates Or8x 

1.2. Velocity field in target 
Velocity field in the vicinity of projectile is approximated by the field of velocities v for irrotational 

motion of ideal incompressible fluid. Defining v we assume, that a free surface of target a 2 = {x = 0, r?:. d/2} 
remains flat during penetration, and a free surface of entry hole a 3 formed by a tail part of projectile is 
cylindrical: a 3 = {r= d/2, 0 :s; x :s; (P-L)}, (see Fig. 1). 

As it is known [ 18,19] the equations of non-stationary irrotational movement of ideal incompressible 
fluid with density p in case of potential flow have the following form: 

\7
2<D = 0, Laplace equation (2) 

p(o<D/ot) + p/2lgrad<DI 2 + p =fit), Lagrange-Cauchy integral (3) 
where <D(x,r,t,P)- velocity potential (i.e. v =-grad <D), p- static pressure component, f(t) -arbitrary function of 
time, independent from coordinates and identical over the whole volume of fluid. Function f(t) is found from 
boundary conditions. 

First equation (2) is a condition of incompressibility of fluid (or the continuity equation), second 
equation (3) - the first integral of Euler's equation of motion which is known as Lagrange-Cauchy integral 
(sometimes it is called Bernoulli-Cauchy integral). Equation (3) is conservation of momentum and 
grad[p(o<D/ot) + p/2lgrad<DI 2 + p] = diva' = grad(!{t)) where a' is a deviatoric part of the Cauchy stress as 
described by Yarin et al [ 16]. If Lagrange-Cauchy integral (3) is considered on projectile surface left part of 
equation (3) defines a normal pressure Pc of target material on projectile surface, i.e. Pc = p(o<D/ot) + p/2lgrad<DI 2 

+p. 
Due to the assumptions made and because equation (2) does not contain partial derivative with respect 

to time, time t enters into (2) as a parameter which influence is manifested through the boundary conditions 
containing geometrical characteristics of projectile and its velocity u(t). Therefore, both time and depth of 
penetration P(t) are listed in the arguments of potential <D. 

Thus, for potential <D we have the following Neumann boundary conditions: 
o<D!on =- u(t)nx at M(r,x) E a], o<D!on = 0 at M(r,x) E ( a2 u a3), ( 4) 

<D= 0( l/ R)---+0 when R = ~ r2 + x2 ---+ oo , 
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where a 1, a 2, a3 - surfaces as indicated earlier, nx- cosine of angle a between axis x and normal to projectile 
surface a 1, (see Fig. 1). Condition (4) is the condition of impenetrability of target material across projectile 
surface a 1, cylindrical surface a3, and target surface a2. 

From the linearity of boundary problem of Neumann (2), (4) follows, that velocity potential r:D(x,r,t,F) 
may be presented as 

r:D(x,r,t,F) = u(t)qJ(x,r,P). (5) 
Here function qJ(x,r,F) is a solution of Laplace equation 

V2qJ=0 (6) 
with boundary conditions 

oqJ!Gn = -nx when M(x,r) Ea1, oqJ!on=O at M(x,r) E( a2 u a3), qJ = 0(1/R)---+0 when R -+oo. (7) 
Let's notice, that qJ(x, r, F) depends on F as on parameter, which, in its turn, depends on time t. 

Thus, the field of velocities v in the proposed model is defined by an expression 
v = -u(t) grad qJ(x, r, F). (8) 

Obviously, velocity field (8) is approximate, since during penetration a free surface of target a2 does not remain 
plane and a free surface of input hole a3 is not a circular cylinder (see Fig. l ). In a complete formulation of 
penetration problem of rigid projectile the shape of these surfaces has yet to be determined. 

However, according to the experiments (for example, Piekutowski et al, 1999 [ ll]) the deviations from 
surfaces a2 and a3 accepted in the proposed model are insignificant (in comparison with a diameter of 
projectile), especially it concerns plastic materials (see, for example, X-ray photo from the mentioned work, Fig. 
l ). Thus, the accepted assumptions as to surfaces a2 and a 3, in our point of view, insignificantly distort actual 
field of velocities v, but considerably simplify the investigation of this field and emphasize its main features. 

Let's note, that in the proposed model the function r:D = U(j) is a velocity potential of ideal incompressible 
fluid for which there are no friction forces (tangential stresses) between target material and projectile surface. 
This approximation, which neglects tangential stresses on projectile surface, is a common one in the majority of 
computing schemes. As was mentioned earlier, in [ 12] on the base of computational modeling and experimental 
evidence authors rejected the use of sliding friction. 

Because of this, we believe that a prediction of integral values of penetration process (such as a force 
that decelerates projectile, penetration depth and velocity) which use velocity field (8) can be quite satisfactory. 
Moreover, as the main influence on projectile motion is rendered by potential r:D = U(j) and velocity v = -ugradqJ 
on the surface of a head part of projectile, then the influence of boundary conditions (7) on a2 and a3 would 
decrease as penetration depth F increases and become insignificant when F would exceed several projectile 
head lengths. 

1.3. Ballistic integro differential equations of projectile motion 
As in [20], for building of projectile motion equation we use Lagrange-Cauchy (3). If we substitute 

velocity potential (5) ( r:D = u(t)qJ(M,P), F = f u ( T) d T ' or:D = (jl du + (j)~U 2 ' gradeD = ugradqJ) in Lagrange-
0 at dt 

Cauchy integral (3) and consider this integral on projectile surface, then a left-hand part of (3) would define a 
contact pressure Pc(M,P) of target material on projectile. Here coefficient qJ~ takes into account change of the 

target boundary with penetration, i. e. domain of definition of velocity field (8). Therein lies its mechanical 
significance. Further we assume that in (3) static components of pressure on projectile surface p = R1 where R1 

- pressure in a spherical cavity during its quasi-static expansion, i.e. here we use the analytical solution of a 
problem of quasi-static expansion of spherical cavity in target material which takes into account elastic and 
plastic (or brittle) response of material. R1 is constant and depends on mechanical properties of target material 
only (see (16-19)). The use of such solution is caused by a fact that analytical solution of quasi-static 
indentation of rigid projectile of real shape in target material generally is not possible. Besides, since target 
material at this indentation flows or fractures and relaxation of stresses takes place, value R1 (as it will be shown 
further) enters into the equation of projectile motion as integrand. This, in our opinion, makes the adopted 
approximations justified and sufficient. 

Thus, on the basis of Lagrange-Cauchy integral (3) for normal dynamic pressure of target material 

Pc (M,F) = p ~~ +~plgradr:DI 2 
+ p on projectile in pointM on its surface we obtain 

du ( 2 , ) pu
2 

Pc(M,F)=pqJ(M,F)-+ lgradqJ(M,F)I +2qJp(M,F) -+R1 , 
~ 2 

(9) 



t 

where F = J u ( T) d T - projectile penetration depth. 
0 
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A full decelerating force N acting on projectile is obtained by integration on a contact surface of 
projectile and target a(F) of a projection (-pc(M,F)·nx(M,F)) of contact pressure (9) onto axis x. Here nx(M,F)­
a cosine of an angle which is formed by unit normal to projectile surface in point M with axis x (see Fig. l ). 

Equating a complete force of resistance to projectile N to its inertia force m ~: (m- projectile mass) 

the ballistic equation of motion of non-deformable projectile is obtained: 
du 

mdt= N, u(O) = U0, (10) 

where U0 =Us- impact velocity. 
Accounting for (9), equation ( l 0) can be written as 

du du pu 2 

m-=-pA(F)--B(F)--C(F)R, u(O) = U0. 
~ ~ 2 t 

(ll) 

In ( ll) the coefficients A, B, C depend on projectile shape, penetration depth F and are defined by the formulas 

A(F) = f f1J(M,F)nx (M,F)daM , C(F) = f nx (M,F)daM, (12) 
cr(P) cr(P) 

B(F) = f (lgradf1J(M,F)I
2 

+ 2qJ~ (M,F) )nx (M,F)daM. 
cr(P) 

In these formulas a contact surface a( F) of projectile and target in a moment of time tis approximately defined 
by the inequality 

[ 
du (I 12 , ) pu

2 l a(F)= M:pf1J(M,F)dt+ gradqJ(M,F) +2f1Jp(M,F) -
2
-+R1 >0 . (13) 

If projectile surface is formed by a rotation of liner= r(x) around axis x (see Fig. 2), then in (12) 

n r' daM = 2nr~1 + (r')
2 

dx, 
x = ~l+(r')2' 

and these formulas can be written as: 

A(F)=-2n J f1J(x,r(x),F)r(x)r'(x)dx, C(F)=-2n J r(x)r'(x)dx, 
lp lp 

(14) 
B( F)= -2n J (lgradqJ( x, r( x ),F)I

2 
+ 2qJH x,r( x ),F) Jr( x )r'( x )dx, 

lp 

where a stroke denotes derivative with respect to x, and lr- intervals on axis x which define a region of contact 
of projectile and target material: 

lp={x:pqJ(x,r(x),F)~: +(lgradqJ(x,r(x),F)I
2 +2qJ~(x,r(x),F)Jp;

2 

+R1 >0}. (15) 

Fig. 2 illustrates one contact interval lr = [xc,F]. 

Target material 

Cavitation channel (pc:S;O) 

~ij/,7%7~~~Y/,7%7Y/-~Y/-0~/-7%7Y/,~Y/-0~7~/.«.«~~/,7,~~%~~~~~ 

r = r(x) 
projectile 

0 

~;;::::-----''­

r(x) 

X 

Fig. 2 To the definition of contact surface between projectile and target material; C- point of separation of 
target material from projectile surface 
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Inequalities (13) and (15), approximately determining contact surface a(P) between projectile and target 
material, are more detailed form of the condition Pc(M) > 0. Regions of separation of target material from 
projectile surface a( F) are approximately defined by a condition: a( F) = {M: Pc :s; 0}. 

As it was noted earlier, the value of static penetration resistance of target material R1 is defined by the 
analytical solution of the problem of expansion of a spherical cavity. At present there exist a number of 
solutions for both brittle and plastic materials. Several of them that are used further we list below. 

For elastic-ideally plastic and elastic-brittle materials the following formulas can be used respectively 
[21-23]: 

(16) 

(17) 

Here E, v are Young's modulus and Poisson's ratio, Y- compressive yield strength for (16) and strength at 
uniaxial compression for ( 17), a1 - tensile strength, a - characteristic of fractured media [23]. To account for 
a post-yield strain-hardening of material the following formulas can be used [8,12] 

2 [ l2£Jn : l-3Y/(2E)(-lnx)n 
R =-Y l + - I I = f dx 1 3 3Y ' 1-x ' 

0 

(18) 

where n - strain hardening exponent. 
For penetration of in limestone Frew [24] established that penetration resistance depends on penetrator 

dimensions: 
Rr ='I'+~ (a0/a), (19) 

where 'I'= 607 MPa, ~ = 86 MPa, 2 a0 = 25.4 mm, a- projectile radius (mm). 

1.4. Determination of velocity potential <p by method of boundary integral equations [25] 
The solution of the Neumann problem (6), (7) is sought as a potential of a simple layer 

f 
f.l ( MJ) , ( - --;-) -;-

<r(M,P)= ( )d5(MJ),ME Du5 ,M1 E5, 
5 R M,M1 

(20) 

in which ,'({=(SuS') -a surface symmetric to plane x = 0, and 15 -infinite area with a boundary ,'({; 

R(M,M1)- distance between a fixed point of observation M(x,r,8) and a source point of integration M 1 (x1,r1,81) 

(see Fig. 3); f.t(M1)- the unknown density of simple sources distributed on surface S. 
The density f.t(M1) is a solution of the following boundary integral equation 

1 cos( R, n) 1 
fl(M)+-f f.t(M1) 

2 
dS(M1)=-g(M), M, M 1 ES, 

2n s R (M,MJ) 2n 

1 

X 
-

11 

·nx(M), M Ea1 ua;, 
g(M)= X 

0, M Ea3 ua~, 

(21) 

(22 a-b) 

where vector R is directed from point M to M 1, n ( M) -unit normal to S in point M (internal with respect to 

15 ), nx(M)- a projection of a normal n onto axis x. 



D' D 

S'= (cr' 1ucr'3) 

~------

-P ', ' I I 

''-------~-1-~---: _:'_;_~_ ... :.....,;;,_-+---""---~ 
L 

Fig. 3 Geometrical scheme of the domain of definition 15 =DuD' for potential <p. Region D' and surface 
S' = (a' 1 ucr' 3) are symmetric to region D and surface S = (a 1 ucr3) with respect to plane x = 0. 
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If surface S is formed by a rotation of liner= r(x), XE [-P,P] around axis x and symmetry to a plane x 
= 0 and axis x is taken into account as well, then boundary equation (21) can be written as 

2 P - - g(x) 
f.L(x)+- f[ K(x,xJ)+K(x,-xJ)]f.L(xJ)dx1 =-

2
-, x, x1 E [O,P], 

n
0 

n 

g(x)= r' , 
{

0, xE[O,P-L[, 

~' X E[O,P]\[O,P-L[. 

Here we have the following notations: 

_(,, )-[E(m)[(x-xJ)nx+(r-rJ)n,.J E(m)-K(m)n,.l ~ 
K x,x1 - ~ - ~ r1-v1+r1 , 

(a-b)-va+b 2r...;a+b 

a= r2 + r1
2 + ( x- x1 )

2
, b = 2rr1, r = r(x), r 1 = r(x1), m = _]!:_, K- full elliptic integral of the first order, E­

a+b 
full elliptic integral of the second order [26], n,(M)- a projection of normal n to axis r (see. Fig. 3). 

rl rl 
For components of velocity vx = -u (t) c<p, v,. = -u(t) c<p in directions x, r (see Fig. l ), respectively, we ox or 

obtain 

P E(m)(x x) 
v.(x r)=4u(t) I - 1 

r, ~''(x )dx 
x ' _p(a-b).Ja+b 1v'1+r1 r 1 1, 

P [ E(m)(2r
2 

-a) K(m) l ~ 
v,.(x,r)=4u(t) I Fa+b+ Fa+b r1-v1+r1

2 f.L(xJ)dx1 . 
-P 2r(a-b) a+b 2r a+b 

(23) 

2. An approximate account of elastic oscillations of long projectiles and estimation of value of 
impact velocity at which a projectile undergoes a plastic flow 

Further, while evaluating the influence of elastic oscillations of long projectile on its penetration, we 
neglect local elastic deformations of projectile nose and assume that the projectile has the shape of circular 
cylinder with a diameter d and length L. These oscillations are considered separately from projectile motion as a 
rigid body and the estimate of their influence on the transportation velocity of penetrator is made via energy 
loss. To evaluate the influence of forced elastic oscillations of projectile we use a solution of a problem of 
longitudinal oscillations of a rod [27,28] with one free end (x = 0), and compressive stresses (-cr0) instantly 
applied to another (x = L) (at the moment of timet= 0): 
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w = -{ aot2 + 2aoL L ( -1 Y [1- cos incot]cos inx l 
2p PL n2 E P i=l i2 L L ' 

i = 1,2,3, ... , (24) 

where w(x,t) - relative displacement of cross-section of a rod x at the moment of time t, pP - density of rod 

material, Ep- Young's modulus of rod material, c0 = -sound speed in projectile. The influence of 

cross-section oscillations is neglected. We believe the use of this solution is justified since (as the calculations 
show, see Fig.8) a penetration of long rigid projectile occurs at almost constant acceleration ( du/ dt) and, thus, 

l b k . " du aond2 . . "l h l . f ... l at a most constant ra mg 10rce N = -m- = ---> 0, actmg on pro]ectl e ( ere u - so utwn o 1mt1a 
dt 4 . 

boundary problem (ll)). Besides, the value of force N weakly changes at small variations of initial condition 
u(O) = U0 in (ll). 

Let's note, that in this paragraph for convenience it is supposed, that the force compressing projectile N 
is positive, unlike ( l 0). 

From (24) for displacement w and velocity H' at x = L (i.e. for w and H' at projectile tip caused by its 
forced oscillations with a period T = 2L/ c0 ) we obtain 

w( L t) =- aoco t H' = CM' =- aoco (25) 
' EP ' ot EP . 

Here a 0 = 
4~ and braking force N > 0 is a little changing value (N "' canst through a whole depth of 
nd 

penetration); vectors w and H' are directed opposite to the direction of projectile motion. Therefore the initial 
velocity of projectile penetration U0 in the target is 

. a 0c0 4Nc0 U0 =Us +w=Us ---=Us-
2 

, (26) 
EP nd EP 

where Us - projectile velocity before its meeting with target, i.e. impact velocity. For a non-deformable 
projectile U0 = Us. 

On the basis of (24) a longitudinal deformation of projectile ow/ ox (caused by oscillations) at the 

moment of time t is defined by 

ow_ 2a0 "(-lY [l- inc0t] . inx ·= 12 3 - L._. COS Sln , l , , , .... 
ox nE P i=l i L L 

(27) 

For the moments of time t = ~( 2i -1) this deformation ow=-~= canst< 0 at all values XE [O,L]. Therefore 
c0 ox EP 

during these moments of time projectile is entirely compressed by stresses (-a0), i.e. in each cross-section of 
projectile x there exists compressing stress (-a0). 

During an impact the energy of projectile consists from: a kinetic energy T = ~mu2 (u - projectile 

transportation velocity); elastic energy W1 caused by lateral compression of projectile; energy of elastic 
oscillations of projectile W2, caused by sudden application of braking force N. 

The elastic energy W1 associated with lateral transversal compression of projectile by pressure 

p1 = Pc (M,P)sina = [P<r(M,P) ~: + (lgrad<p(M,P)I
2 +2<p~ (M,P)) P;

2 

+ R1 }ina, 

where point M is on a lateral surface of projectile and a - an angle which forms a normal to projectile surface 
in point M with its axis, Pc- normal pressure of target material on projectile surface, see (9), is approximately 
estimated by the formula 

(28) 
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nd2 ( 1-v P) 
Here e(p1) = 

4
£ Pl (M,P) - energy of deformation of projectile cross-section m point M at 

p 

penetration depth P, determined in the assumption, that normal stress in projectile cross-sections is absent (vp­
Poisson ratio for projectile material). Estimatingp1 we assume sina = l. 

Energy of forced elastic longitudinal oscillations of projectile W2 accumulated to the moment of time t 
(work of drag force spent on elastic oscillations) on the basis of (25) is estimated by value 

2 2 2 
W =..!_Nw(L t)= 2N Cot= nd aoco t (29) 

2 
2 ' nd2EP 8EP 

which coincide with value [27] where it is represented by a convergent series. From (29) can be seen that the 
energy of forced oscillations increases proportionally to time while braking force remains constant. 

S. 4N h " b . . . mce p1 :s; a0 = --
2 

, t en 10r energy W1 we o tam an estlmatwn 
nd 

4(1-vP)N
2
L 

~:s; 2 
nd EP 

From this and from (29) at c0t >> 2L we obtain W1 << W2 and we can neglect the energy of transverse 
compression. Further calculations confirm that we can neglect this energy. 

Solution of equation ( 11) at initial condition (26) we denote as u and further refer to it as "a velocity of 
penetration of quasi-rigid projectile". This can be justified by the fact that initial condition (26) for the equation 
of motion of non-deformable projectile (11) takes into account projectile elastic deformations. 

Thus, between kinetic energy of quasi-rigid projectile T = .!:_mu2 and complete energy of deformable 
2 

projectile ~mu2 + ~ + w2 there is a relationship 

1 -2 1 2 
-mu =-mu +~ +W2 , 
2 2 

which defines penetration velocity u of deformable projectile through quasi-rigid projectile velocity u 
_ 2(~+W2 ) 

u = u 1- -2 ' (30) 
mu 

where values Wi, i = 1,2, are calculated by formulas (28), (29) and depend on braking force N = -m du , which 
dt 

is approximately defined by Cauchy problem (11) and (as it was discussed earlier) weakly changes during an 
du 

impact. Thus, with a sufficient accuracy one may also assume N"' -m-. If we neglect energy ~, then 
dt 

formula (30) takes simple form 

-~2W2 U=U ----2 . 
mu 

(30') 

From (30) follows, that a motion of projectile (as a solid body) with transportation velocity u takes place 
until the moment of time l when the following equality comes true 

2(~ +W2 )=mu2
. 

It means that a penetration of projectile stops when its kinetic energy ..!..mu2 becomes zero and it has only the . 2 

energy of its elastic deformation. After this moment a transportation motion of projectile stops and it performs 
damped oscillations. 

Having defined a transportation motion of projectile u(t) by (30) for a complete actual penetration depth 
Pwe obtain 

* t 

P= Ju(r)dr, 
0 

and for a correction M to a final penetration depth of quasi-rigid projectile J5 we have 
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** t t 

M=P-P= Ju(r)dr- Ju(r)dr<O, 
0 0 

where r**- time of impact of quasi-rigid projectile u* :s; r*\ 
Let evaluate a threshold value of impact velocity Us = U,c at which a projectile undergoes plastic 

deformations causing irreversible changes of its shape and instability of motion. 
Since Go - peak value of an axial stress in projectile (if a projectile does not lose stability at 

compression) the plastic deformations in it start to develop under a condition 
4N 

G 0 =-
2 

= YP, (31) 
nd 

where Yp- dynamic yield stress of projectile material. 

Ifwe take into account N=-mdu = m ( )[B(P)pu
2 

+C(P)R1 ] 
dt m+pA P 2 

(see equation (ll)), then from 

(31) we obtain the following equation for projectile velocity u at which the plastic deformations appear in it 

nd
2

(m+pA(P)) _ ( )pu
2 

( ) 
----'--4-m--'----'-'-YP - B p -2- + C p Rr ' 

or 

u = nd(2 / ( l + m I YP - 4C(;) Rr J , 
2pB P ll m) nd 

(32) 

where A(P), B(P), C(P) - coefficients of the equation (ll) and m = pA ( P) - an added mass. Let's note here, 

that the coefficients A, B, C depend on penetration depth P (as parameter) and shape of the projectile nose. At 
sufficiently large values of P (for projectiles discussed further P > L 11 , L 11 - length of a head part of projectile) 
they are constant (do not depend on P and depend only on projectile shape). Therefore for these values P and 
the right-hand part of equality (32) is a constant value. Besides, as further calculations show, this constancy is 

almost established by the moment of returning of a front of elastic longitudinal wave ( t = 
2

L ) in projectile to a 
co 

contact surface. Therefore further factors A, B, Care considered as constants, and argument Pis not referred to 
in formulas. 

As the largest value of velocity u is observed at the beginning of impact, when 

u "'Us - Go co =Us - Ypco (see (26) and (31 )), for critical velocity of projectile Usc till its meeting with a target 
EP EP 

(i.e. for critical velocity of impact) from (32) we obtain the estimate 

Usc = YpcO + nd2 ( ( l + m I yp - 4~ Rt I ' 
E P 2pB ll m) nd ) 

(33) 

and projectile flows under a condition U, ~ U,c. Thus, plastic deformations in projectile develop from the 
beginning of impact. In formula (33) radicand has to be positive. If this expression is negative, i.e. the opposite 
inequality is true 

(34) 

which means that the target is of the same strength as the projectile or even stronger, then critical velocity of 
impact is 

Ypco 
Usc=--, 

EP 

and projectile flows under a condition of Us ~ U,c which coincides with known condition [29]. Thus, the 
condition Us~ Usc where U,c is defined by (33), is a generalization of this known condition of transition of the 
projectile material into a plastic state. 

l · ·1 h m pA A- 4A d C- 4C . 1· . l.fi d h For ong pro.Jectl es w en - = -- << l, = --
2 

an = --
2 

"'l, mequa 1ty (34) s1mp 1 1es an as 
m PpL nd nd 

a simple mechanical meaning: R1 ~ Yp. 



Ifwe introduce "reduced strengths" of projectile and target, respectively, 

Rt =CRt, ~ =[l+ pA lYP, 
PpL 

and denote If= 
4~ , then formula (33) for critical velocity can be rewritten as 
nd 

12 

(35) 

(36) 

and is analyzable by elementary means. Indeed: if value Yp increases, then critical velocity Usc increases also; if 
strength of target R1 falls, this speed increases; if sharpness of projectile nose increases the coefficient If 
decreases (for spherical (\l' = 0.5) nose If= 0.58, for ogival (\l' = 3) nose If= O.ll) and, hence, U,c increases; if 
bluntness of the nose increases the coefficient A increases (for ogival nose A = 0.0010, for spherical A = 

0.00 15) and, therefore, the reduced strength of projectile YP (associated with the added mass m = pA, see (35)) 

increases. Formula (36) can be used to define a dynamic yield stress of projectile material Yp if other values 
entering into it are known. See example in appendix. 

Note, that the case of stability loss of long projectile can be also considered under the proposed scheme 
of investigation of plastic deformations of projectile. Indeed, in this case in the main formulas (31) - (36) it is 
necessary to change value Yp for the value of critical stress Yc = <pYp where <p < l - coefficient of a longitudinal 
bend for centrally compressed rod (projectile) which depends on its flexibility 1e, as well as on properties of 

projectile material. The characteristic type of a dependence of normalized critical stress <p = yc vs. flexibility 1e 
yp 

is presented in Fig. 4 [30~ 

1.0 r---

0 

Fig. 4 A characteristic type of a dependence of a coefficient of longitudinal bend <p = yc vs. flexibility 1e (the 
yp 

normalized diagram of a critical stress [30]). For values 1e;::: lee the loss of stability occurs at elastic 
deformations; for values 1e < lee the loss of stability occurs at elastic-plastic deformations. 

We believe, that flexibility of projectile can be estimated as 'A= ~ in the initial, most dangerous for 

projectile, moment of impact when lateral surface of projectile is unconstrained and the compressing stresses (­
a0) appear in its any cross-section. 

Thus it is easy to understand that the loss of stability leads to a decrease of value of critical velocity Usc 
(since <p < l) (see (33), (36)), especially for long projectiles. 

3. Numerical implementation 

We consider the case of elastic deformation of the projectile and compare the results with experimental 
data where penetrator was only in linearly-elastic state (it was controlled by a post-impact projectile state). 

As an illustration, the penetration of projectile is calculated with a geometry given in Fig.5. Equation 
(ll) was solved using Euler's method. For the considered projectile shapes and velocity range, the calculations 
by formula (9) show that Pc > 0 on the projectile surface and there is no separation of material from projectile 
(see Fig. 2). The estimate of elastic energy from transversal compression W1 by formula (28) shows that it can 
be neglected. 
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Fig. 5 Geometry of ogival projectile, s =3d, Lh = 11.8 mm for ogival head, s = 0.5 d, Lh = 3.555 mm for 
spherical head, Lc = 59.3 mm, d = 7 .ll mm, L= Lc + Lh. 

In Fig.6 the plots of potential <p at the projectile tip changing with penetration depth are demonstrated. 
The dependence of derivative <p~ vs. P for point A (Fig. l) on the projectile surface is shown in Fig. 7. 
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Fig. 6 Dependence of potential at projectile tip on penetration depth 
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Fig. 7 Dependence of derivative <p~ vs. P for ogival (a) and spherical (b) nose projectiles 

The dependencies of the coefficients A, B, C of equation ( ll) on penetration depth Pare shown in Fig.8. 
Figure 9 shows the dependence of penetration velocity u vs. time t. Curve l here is the solution of ( ll) for U0 = 
Us, curve 2 is the solution of ( ll) with initial condition (26), curve 3 is calculated using (30'). Figure l 0 
demonstrates the dependence of penetration velocity u vs. time t and penetration depth P for ogival and 
spherical nose. The dependence of penetration depth P on time t is given in Fig.l1. The typical fields of 
velocities in target material for spherical and ogival heads are illustrated in Fig.l2 and 13 for penetration depth 
37.0 mm and 35.9 mm respectively. In the vicinity of projectile head these fields have explosive character. R1 

defined by (16) was used in all calculations in Fig. 9-13. 
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Fig. 12 Velocity fields near the projectile. Spherical head 
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Calculations by the model were compared with available experimental data. Fig. 14 presents penetration 
depth dependence on impact velocity for projectile with spherical nose. Target material- aluminium 606l­
T65l, Y= 400 MPa, E= 68.9 GPa, v= 0.33, p = 2710 kg/m3

, projectile- steel, pp= 8000 kg/m3
, Ep = 210 GPa, 

vp= 0.29,. L= 74.7 mm, a= 3.55 mm. The plots in Fig. 15 demonstrate penetration depth dependence on impact 
velocity for projectiles with ogival nose. Target material in Fig. 15 (a)- aluminium 606l-T65l, Y= 400 MPa, 
E= 68.9 GPa, v= 0.33, p = 2710 kg/m3

, projectile- steel T-200, pp= 8020 kg/m3
, Ep = 210 GPa, vp= 0.29, L= 

82.9 mm, a= 3.55 mm. Target material in Fig. 15 (b)- aluminium 7075-T65l, Y= 448 MPa, E= 73.1 GPa, v= 
0.33, p = 2710 kg/m3

, projectile- steel T-200, pp= 8020 kg/m3
, Ep = 210 GPa, vp= 0.29, L= 82.91 mm, a= 3.55 

mm. Target resistance R1 for calculations in Fig. 14, 15 was evaluated by formula (16). These figures illustrate 
noticeable influence of projectile forced elastic oscillations on penetration depth. 
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Fig. 14 Dependence of calculated penetration depth on impact velocity (spherical nose): l -rigid projectile, 2 -
elastic projectile. Experimental points borrowed from [ ll] 
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Fig. 15 Dependence of calculated penetration depth on impact velocity (ogival nose): l- rigid projectile, 2-
elastic projectile. Experimental points were taken from: a) [7]; b) [8] 
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Fig. 16 shows comparison of model predictions with experimental data for limestone. Target resistance 
R1 was calculated by (19), p = 2310 kg/m3

, projectile- steel4340, pp= 7850 kg/m3
, Ep = 210 GPa, vp= 0.29,. 

L= 71.0 mm, a= 3.55 mm. 
Results of comparison with experimental data show reasonably good correspondence. Still there is need 

for future investigation of oscillation on penetration for different pairs of projectile-target both theoretical and 
experimental. The existence of publications where good agreement of theoretical predictions and experimental 
data was reached without involvement of oscillation phenomena (see e.g. Yarin [16]) may be an indication that 
a combination of factors - from difference in formulations of initial problem to improper account of different 
factors and their interaction- can be the cause (and the subject of further analysis). 

5. Conclusion 

New ballistic equation of normal friction-free penetration in semi-infinite targets of non-deformable 
axisymmetric projectiles of various shapes has been proposed and analyzed. It has a simple and clear 
mechanical structure and is built on the base of Lagrange-Cauchy integral for non-stationary irrotational motion 
of ideal fluid. The equation can be used for analysis of penetration in elastic-plastic and elastic-brittle materials. 

The equation of projectile motion is constructed on the base of definition of integral force of resistance 
acting on projectile from the part of target. Its value is determined by surface integrals from the functions of 
velocities potential for target material on the projectile surface. 

The suggested ballistics equation allows to make a fast and rather reliable prediction of integral 
characteristics of normal penetration of projectiles in target (penetration depth, drag force acting on projectile 
and its components, penetration velocity) without additional fitting parameters. 

A number of calculations were carried out for long steel projectiles of different shapes penetrating 
aluminum targets at velocities in the range of 600-1600 km/s. The results were compared with available 
experimental and computed data [7-9,11,13]. A comparison of theoretical curve penetration depth- impact 
velocity with experimental data shows that the experimental data are lower than the theoretical curve for rigid 
projectiles. The models proposed in works [7-9, ll, 12] show a similar trend, and these deviations have a 
systematic nature. In this connection we took into account forced elastic longitudinal oscillations of projectile, 
caused by sudden application of braking force. The existence of such oscillations was observed in recent 
experiments by Frew, Forrestal, Cargile [31] and also in much earlier research by Masket, (1949) [32] and 
Bluhm (1956) mentioned by Goldsmith [28, chapter 6]. The energy of these oscillations caused by drag force 
(work of drag force spent on elastic oscillations) is accumulated and has maximum in the end of penetration 
though deformations of penetrator are elastic (small). It is shown that these elastic oscillations noticeably affect 
the final depth and velocity of penetration. In our opinion longitudinal oscillations can also reduce tangential 
stresses on the surface of projectile thus minimizing friction forces. A comparison of final penetration depths 
with the experimental data is in a good agreement. A critical impact velocity is defined at which projectile 
undergoes plastic deformations and loses its shape and stability of motion. The obtained estimate for a critical 
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impact velocity has obvious mechanical meaning and generalizes a well known estimate for critical velocity of 
longitudinal impact of rigid mass on a rod. 

Appendix 
Example estimate of dynamic yield stress 
The projectile with a spherical nose made from steel V AR 4340 has the following parameters 

Ep = 210 GPa, PP = 8000 kg/m3
, L = 74.675·10-3 m, d = 7.11·10-3 m, A= 1.5·10-3

, B = 0.58, C = 1.00, 
and the target made of aluminium alloy 6061-T65l has the following properties 

p = 2710 kg/m3
, Ep = 68.9 GPa, v= 0.33, Y = 400 MPa. 

From the experiment Usc"' 1000 ms-1 (see [9]) and - l 2.71·1.5 J YP = l + · YP = (1 + 0.0068) · YP = 1.0068YP GPa, 
8· 74.675 

R =
2
y{l+ln[ E ]·}=

2
.
400

{l+ln
689

}=1455 GPa 1 3 3(1-v)Y 3 8 ' 

9 

R1 =1.0·1455=1455 GPa, c0 = 210·10 =5123 ms-1, 
8 ·103 

and from equation 

y ·10-3 

Usc= P ·5123+ 
210 

2 ·106 

-----=-,--(1.0068YP -1455) =1000 ms-1, 
2.71·10• . 0.58 

fi d G Q . . . ld . d . yp 2135 h. h we m Yp = 2135 Pa. uas1-stat1c y1e stress 1s Yps = 1481 MPa (see [8]) an rat10 - = -- = 1.44, w 1c 
Yps 1481 

is a rather good result. 

II Development of new numerical-analytical model of expansion of spherical cavity in brittle 
material on the basis of modern concepts of mechanics of compressible porous and powder 
materials 

Introduction 
It is well known that the models of mechanics of expansion of spherical and cylindrical cavities in 

materials have essential significance for investigation of high-velocity penetration in these materials. Both 
models were used for penetration problems. However, it is noted that generally model of expansion of spherical 
cavity better describes high-velocity penetration. Sufficiently complete review and detailed analysis of existing 
models of cavity expansion in different materials can be found in [33]. Notwithstanding considerable 
achievements in construction of such models it is noted in [33] that sufficiently simple and adequate analytical 
models of cavity expansion in brittle materials are still in demand. Most widespread is the model proposed in 
[23,33]. In this model for the material in comminuted or pulverized region was used Mohr-Coulomb law (with 
or without shear saturation) which defines the correspondence between compressive and shearing stresses in this 
region using coefficient of internal friction. Cavity expansion pressure essentially depends upon this coefficient 
[23,34]. This means that material properties in comminuted region strongly influence the penetration resistance 
and play important role in its definition. To estimate this friction coefficient fitting experiment is used (in 
particular, normal impact of sphere on sample [34 ]), which essentially complicates the application of the model 
[23,33]. The new model of spherical cavity expansion in brittle material uses for comminuted region material 
and its boundary with cracked region rheological models of porous and compressible powder materials based on 
approaches developed in [35-38]. This allows to exclude friction coefficient which is determined in complex 
experiment. Instead, new parameter, in our opinion, more naturally calculated parameter is introduced: porosity 
of fractured initial material. Herein lies the main difference of the proposed model from existing ones. 

1. Main equations of the model 

Figure l presents geometrical scheme of the proposed model of expansion of spherical cavity. 
According to this scheme three regions with different stress-strain state are formed in the material: l) r > c -
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elastic region; 2) b < r < c - dilatation pore formation regwn; a < r < b - pulverized regwn. Let's 
consequentially consider these regions. 

Fracture fronts 

e=O 

CD 

0 a b c r 

Fig. 1 Scheme of the model of cavity expansion in spherical coordinates Onp8: 
l - elastic region (r > c, volume deformation e = 0); 2 - dilatation and pore formation region (b < r < c, 
volume deformation> 0); 3- fractured material (a< r < b, volume deformation e < 0). 

1.1. Elastic region, r ~ c. 
In spherical coordinates Onp8 stress-strain state in this region is determined by the following equations 

[38]: 

da,. 2a,. -a<r 0 ( .l.b. . ) --+ = , eqm 1 nty equatwn 
dr r 

du u . d. l l . e,. =-, e<r = e8 =- (stram- 1sp acement re atwns) 
dr r 

e,. =~[a,. -2va<r], e<r =ee = ~[(1-v)a<r -va,.J, (Hook's law) 

with boundary conditions: 
u(oo) = 0; a<r(r =c)= a 8(r =c)= a1 

(l) 

(2) 

(3) 

(4) 

where E, v- Young's modulus and Poisson ratio respectively, a1- material strength in uniaxial tension. 
Solving equations (l)-(4) we obtain 

U=l~V af ~:,a,. =-2a/l~r, a<p=afl~r,r~c, 
and for radial displacement u(c) we have 

l+v 
u(c)=-a1c. E . 

(5) 

(6) 

From (5) follows that in the elastic region hydrostatic pressure p = -(a, + a<r)/3 = 0, and volume 
deformation e = e, + 2e<r = 0. 

1.2. Dilatation and pore formation region, b:,:; r:,:; c. 
Cracked and dilated material in this region is formed at the boundary r = c from elastic region r > c 

where tensile hoop stresses a<r = a 8 reach material strength at uniaxial tension a1; i. e. boundary r = c is 
considered as a fracture front of elastic region and front of transition of material into a state with different 
mechanical properties. Cracking and dilatation is accompanied by pore formation. Thus, elastic region r ~ c is 
bounded by dilatation and pore formation region b :,:; r :,:; c where radial cracks are assumed to be distributed so 
that hoop stresses in the whole region are equal to zero, i.e. a<r = a 8 = 0. Because of this material in the region b 
:,:; r :,:; c is considered as a continuum elastically deformable in radial direction with uniaxial (radial) stress state 
with fracture occurring at the boundary r = b where stress-strain state of material satisfies fracture criterion and 
material changes state stepwise. 

At the boundary r = b stresses in dilatation pore formation region satisfy the following boundary 
conditions 

a,(r = b + 0) =a*, a<r(r = b + 0) = a 8(r = b + 0), (7) 
where a,- radial stresses, a<r, a 8 - hoop stresses, a*- stress defined below (see (21), (22)) from fracture 
criterion at the front r = b. 

At the boundary r = c stresses in this region are equal 
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a,(r = c- 0) = -2a1; a"'(r = c- 0) = a 8(r = c- 0). (8) 
At crossing boundary r = c stresses ar are continuous and stresses mp, au are discontinuous. 

Thus, stress-strain state in dilatation and pore formation region is defined by equations [9, l 0] 

da,. +2~=0 (9) 
dr r ' 

du 
a,.=- (10) 

dr 
with boundary conditions (7) for equation (9) and boundary condition (6) for equation (10). Integrating (9), (10) 
we have 

* ( b 12 
a,.= a l-;:-) ' 

u=- a* b(!!__!!_l+ ar(l+v)c, 
E lr c) E 

(ll) 

(12) 

where u = u(r) - radial displacements of material during deformation (u(r) - continuous function of argument 
r). 

From (8), (l 0) and (12) taking into account continuity of radial stresses at r = c we find position of 
fracture front 

c=b fPT 
~~ 

(13) 

From (13) follows that dilatation and pore formation region exists for materials ( c > b) that satisfy 
condition 2a1< (-a\ This condition is further assumed satisfied. 

From this and from (12) for displacement u of boundary r =band deformations in the considered region 
at r = b + 0 we have 

(14) 

where e,- radial deformation; e"' = e8 - hoop deformations; ec- volume deformation, and Yc- intensity of 
shear deformations at r = b + 0. 

Because material cracking leads to pore formation and volume deformation rate e is related to porosity 

change rate 8 by differential dependence 

or 

. 8 
e==--

l-8' 

d8 
de=--

1-8' 
(15) 

then material porosity 8 in the dilatation region at r = b + 0 which was formed in this material after its fracturing 
can be found from the integral of equation ( 15) 

l-8 
e = ln--0 (16) 

l-8 ' 
ate= ec; 80 - initial (before deformation) porosity of material in the region (b < r <c). 

Thus, from (16) ate= ec for "full" porosity 8* of material at r = b + 0 we have 
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8* = 1 - (1 - 8o)exp(-ec). (17) 
From here (at 80 = 0) for "induced" porosity of material 8c (i. e. additional to 80 porosity formed during material 
cracking in the region b < r < c) we have 

8c = 1 - exp(-ec). (18) 

1.3. Pulverized region (a < r < b) 
Region (a < r < b) consists from compressed fractured material formed from cracked material of region 

(b < r <c) at the front r = b where material is comminuted (fragmented) by shearing stresses and then densified. 
Because of this we can use for the material of pulverized region rheological models of compactable porous and 
powder materials. 

Further for such materials we use the following constitutive equations [35-38] 

{

p2 T2 2 
-+-=-(1-8)~. 
\jf <p 3 ' 

<pp = S\j!T 

(19) 

( 1 8 )3 
. 

where 'l' = ~ -
8 

, <p = ( 1 - 8)2
- functions of porosity 8; s = f -index of deformation state depending on 

a1 +a2 +a, 
velocities of volume e and shearing y deformations; p = · , a 1, a2, a3 - main stresses, 

3 
112 

T = ~ [ ( a 1 -a 2 )
2 

+ ( a 2 - a 3 )
2 

+ ( a 1 - a 3 )
2 J · ; Y, - flow stress of solid phase at uniaxial compression. First 

equation in ( 19) is a condition of flow of porous body (in the space of variables p - T it describes flow ellipse), 
second equation in (19) is an associated flow law. 

At the front r = b (see Fig. 1) first equation in (19) we consider as a condition of fracturing 
(comminution) by shearing stresses of a material in the region 2 with the porosity 8 = 8* = 1 - (1 - 8o)exp(-ec), 
see (17). Second- as an associated law of fracturing (compaction) of material in the region 2 with "induced" 
porosity 8c = 1 - exp( -ec), see (18) (i. e. porosity formed by radial cracks in region 2 and additional to initial 
porosity 80). Here Y, is strength limit at uniaxial compression of porous free material. Thus, fracturing and 
densification of the material in region 2 at the front r = b (i. e. formation of material of region 3) we consider as 
"quasi-plasticity" of porous material. 

Let's define the value of deformation state index s at the front r = b. At this front it can be written out in 
the form 

(20) 

where e = e, + 2e<p, y = {I. le,. - e<r I, e,. = du , e<r = !:!_ - radial and tangential components of deformation, {3 dr r 
signs "+", "-" denote values before front (at r = b + 0) and behind the front (at r = b - 0), respectively. If we 

take into account that e, < 0, e<r > 0, e; = e;, and e, = e- 2e<r, then from (20) we obtain 

e+ -e- (3 e+ -e- (3 e+ -e- (3 e+ -e- (3 e+ -e- (3 
s= y+ -y- =~lie: -e;l-le; -e;l ~2 -e: +e; +e,-:- -e; ~2 -e: +e; =~2 -e+ +e- =-~2 · 

This value of index s =-~ corresponds to compression in the die mold, spherical in this case. 

* a,. + 2a<r {2
1 

I * (3 
If in relationships (19) we put 8 = 8 , p = 

3 
, T = ~J a,. - a<r , a,= a , s = -~2 (i. e. consider 

conditions ( 19) at the front r = b) and exclude a<r from them, we obtain the following equation for determination 
of radial stress a,= a* < 0 at the front r = b 

* 2(1-8*t
2 

a =-C~, C= G , 
3\,18. 

where porosity 8* is calculated by formulas (see 14),(17)). 

(21) 
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* c/[ {ELl 8 = 1- ( 1-80 ) exp ( -ec) , ec = -E 1- ( 1- v) V ( -c/) > 0 

It is obvious that stress c/ < 0 depends only on material properties and thus is its characteristics. 
Nonlinear equation (21) can be solved by method of consequent approximations 

* 2(1-8:t

2 

* ['/[ fEL]] * a~+l=- 318: ~' 8~=1-(1-8o)exp i 1-(1-v)v(-a:) 'a~=~, n=0,1,2, .... (22) 

It should be noted that dimensions of regions 2 and 3 (see (13) and Fig. 1) are connected by relationship 

b{EL 
-;; V (-a* ) ::; 1 ' 

Further we assume that in the region (a< r <b) porosity 8" and volume deformation ek are constant (do 
not depend on r) and also Elk= ek = 0 during cavity expansion. Such material state in the region (a < r <b) 

takes place at the fracture front r = b (see Fig. 1). It means that at the level of stress ar =a* material in the 
region (b < r < c) at the boundary r = b fractures by shearing stresses, volume deformation and porosity of 
fractured material in the result of densification reach maximum values ek, 8" << 1. After that the material 
becomes porous incompressible medium which behaves in accordance with constitutive equations ( 19) at 

s = - # (compression in spherical die mold) and 8 = 8". Because of this from second equation in (19) we have 

T=- fl~p, 
~21-8k 

ar + 2a<p {2
1 1 

where hydrostatic pressure p = 
3 

and intensity of shearing stresses T = ~J a 1 - a<r . From this we have 

a<p = ll-%8k Jar' ar - a<p = %8kar. (23) 

At the boundary r = b takes place pressure and shearing stress discontinuity: hydrostatic pressure 
* 

mcreases ( p ( r = b + 0) = .2!_, p ( r = b- 0) =a*), and intensity of shearing stresses decreases 
3 

(r(r=b+O)=#Ial r(r=b-O)=#Ia*l8k). 

In accordance with (23) equilibrium equation in the region (a< r <b) takes form 

dar + 2a~ = 0 a= ~8k a .(r =b)= a* 
dr r ' 2 ' ' ' 

and its solution is function 

(24) 

Thus, during cavity expansion (i.e. with increasing radius a) region (a< r <b) is joined at the boundary 
r = b by fractured and densified material with porosity 8k. 

Let's now estimate volume deformation ek and porosity 8k of the material in the region (a< r <b). This 
estimate will be done taking into account elastic compressibility of material of solid phase. Let's note that 
conditions ( 19) do not presuppose compressibility of the solid phase, hence compressibility of the medium with 
rheology (19) takes place due to porosity [35-38]. 

On the basis of accepted assumptions, continuity equations in the region (a< r <b) have the form 
;:j• • 

cu +2~=0 (25) 
or r 

where for convenience it is accepted t = b, and from continuity of displacements at the front r = b for the 

velocity ti = v* of the boundary r = b from (12) we have expression 
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l ~ u (h) ~ ~~ ~ [ 1 _ ~ ( ~::.) ] + cr f (~ + v) J ~~ ~ . (26) 

From this we have the following solution of equation (25) 

u=v"l~r (27) 

Let's define now the relationship between average volume deformation ek in the region (a< r < b) and 

ratio !!_. By definition 
a 

ov 
ek =--, 

v 
4 4 ' 

where ov=-na3
- volume of spherical cavity; v=-n(b-uf- initial volume of the region (a<r<b); 

3 3 

u ~ be•, e; ~- ~ [ 1-
1
; v ~ (~'j) ]- clastic displacement of the bounda'y c ~ h. As a <esult we have 

relationship 

from which it follows that ratio !!:._ remains constant during cavity expansion 
b 

i = ( 1- e;) ( -ek )1/3 . 

From this and from (27) for velocity of cavity expansion ti (a) = da we obtain 
db 

da v 
-= =canst 
db ( * )2 2/3 ' 1- e<r ( -ek) · 

and 

a v 

b ( 1- e; t ( -ek )2/3 

(28) 

(29) 

at cavity expansion from zero radius. This relation and formula (28) define volume deformation ek in the region 
(a< r <b) 

(30) 

Note: If we use true deformation, then instead of formulas (28)-(30) we have, respectively, formulas 

a a *1/3 v l )
3 

l 
ek =- b 1-(a/b)3 '-;;=v. 'ek =-1-v*. 

Porosity 8k we find from differential equation 
d8 

de=--
1-8 

with initial conditione= ec at 8 = 8*. This equation describes change of volume deformation e that is caused by 
change only of porosity 8. Its solution is function 

8 = l- (l- 8*)exp(ec- e), 
and for desired porosity we have formula 

8 = l - (l - 8*)exp(ec- ek + eks), (31) 
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where eks- volume average deformation in the region (a< r <b) caused by elastic deformation of solid phase. 
The account of eks is necessary because deformation ek defined by formula (30) is a sum of eks and volume 
deformation eP = ( ek- eks) of pore compression. 

The value of eks can be estimated by formula 

a 
eks =-, 

Ks 
(32) 

where Ks = ( Es ) - modulus of volume compression of solid phase (i. e. porousless material). Thus, 
3 1- 2v

5 

porosity ek is defined by formula 

* a 
where eks =-. 

Ks 

In the case of small values of 8k, ek, ec, eks formula (33) takes more simple form 

_ * 3(1-vs) * 
ek.-8 -e +e!·-e!·· ek = a c .. 'v.s, s E ' 

Finally, from (24) for pressure R1 in the cavity we have 

where a* is determined by formulas (21 ). 

Example 

* ( b l2a 
Rt =-a l ~) ' 

s 

(33) 

(34) 

Ceramics AD995 [1]: E = 373.14 GPa, K = 231.8 GPa, ar= 0.262 GPa, v = 0.232, Y, = 2.26 GPa. 
Equation (21) is solved by method of simple iteration (22): 

* 2(1-e:t
2 

* _ _ _ (-?(n)) o(n) __ a: [ __ ~ 2a1 l 
an+l= 

3
-JB: ~' 8n-l (1 80 )exp ec ,ec - E l (1 v) (-a:) , 

* a 0 = ~., n = 0,1,2, .... 
In the result we have the following figures for desired values: 

* * * a a =-l0.9GPa,ec=0.024,8 =0.024,C=4.l5,v =0,027, -,;=0.299,eks"='-0.047,8k"='0.018, 

ek = -0.029. 
For the pressure in the cavity we obtain 

l l )3·0.018 
R1 =10.9 -- =11.63 GPa. 

0.299 

This value is close to values 7 - 9 GPa found in literature. 



Ill. Investigation of deformation process at high-speed loadings of ceramic materials with 
diamond-like structure in adiabatic approach at microlevel 

Introduction 
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This problem can be solved by means of a method of pseudo-potentials as it was shown in previous works 

(by the example of calculation of different physical values). In terms of this method a solution of the problem 

can be presented as follows. 

l. Calculation of pseudo-potential for separate components of a material, if a material 1s 

multicomponent. 

2. Construction of a complete pseudo-potential in view of materials structure. 

3. Calculation of total energy of electron-ion system in terms of perturbation theory provided that 

matrix elements of pseudo-potential of atoms are small in comparison with Fermi's energy. 

4. Stress appearing in a material at any loading is commonly defined by the first derivative of total 

energy on deformation. 

Investigation of one axis deformation along axis c in titanium by means of interlayer interaction showed 

that densely packed basic, atomic planes are easily elongated or compressed relatively each other. While 

considering ideal structures, the basic planes remain parallel at one axis deformations, only distances among 

those vary. 

Results of investigation of process high-speed loading (one axis) of titanium were used as an intermediate 

stage for transition to ceramic materials with diamond-like structure. We described these materials in hexagonal 

axes that enabled to allocate parallel densely packed atomic planes. 

As a result of carried out numerical experiment it was obtained that densely packed atomic planes at high­

speed one axis loadings are deformed in different ways (depending on their distance from each other and 

relative positioning of atoms on these planes). 

The developed technique is applied for nanoparticles of diamond-like ceramics. 

1. Calculation of mechanical characteristics of diamond-like materials, proceeding from 

energy of interaction of atomic planes 

Investigation of a course of physical processes (deformation, fracture) in materials between micro - and 

macro - scales remains an actual and unresolved problem of physical modeling in materials science [39]. 

Fracture process of brittle materials is structural - multilevel, and its adequate modeling is associated with 

a necessity of attraction as theoretical methods and modern experimental and computer facilities [40]. 

Theoretical methods which were applied to a problem of deformation and fracture of a wide class of materials, 

originate from the work of Barrenblat [41] for quasi-brittle solid bodies (a model of cohesion zone). In terms of 

continual theory the nonlinear law of boning of force and displacement for atoms in top of a crack is postulated. 

One of the basic assumptions lying in a background of all models of cohesion zone is associated with a kind of 

distribution of cohesion forces. 
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In terms of continual theory the exact form of this distribution is unknown, but some data can be obtained from 

experimental works on investigation of fracture in the field of interfaces. 

This effort is to find out, being based on the method of pseudo-potentials, the mechanism of fracture at 

micro level with macroscopic mechanical characteristics (diamond-like materials) at one axis tension and 

compresswn. 

For a description of fracture process of diamond-like materials (diamond SiC, AlN and BN) at one 

axis loading we use a value of energy of interaction between atomic planes (perpendicular to axis of loading). It 

essentially differs from standard approach where for calculation of mechanical characteristics on microlevel a 

full energy per atom in a material is used [ 42-45], i.e. on averaging on the whole volume, that is not adequate to 

a local character of crack origin. 

Due to anisotropy of single crystal under the influence of loadings, a material is more easy deformed on 

certain crystallographic directions [ 44-45]. For investigated materials with cubic structure these directions are 

body diagonals of elementary cell. Atomic planes, perpendicular to diagonals, are densely packed. Therefore it 

is expedient to describe structure of diamond-like materials in hexagonal axes, having chosen for an axis a 

spatial diagonal of cube [ lll]. Thus the planes { lll}, being the planes of octahedron, would have the indexes 

00 l (i.e. they are the basic planes). 

Structure of diamond and diamond-like materials would be described in this case by three-layer 

alternation of planes (001) like AA'BB'CC' where layers (planes) A, B, C consist of atoms of one grade 

( C, B, Al, Si ), and layers (planes) A', B', C' -from atoms of other grade ( C, N) (see fig. 1). 

n/4 c 

Fig. 1 Description of structure of diamond-like 
materials in hexagonal axises 

Axis C is represented by body diagonal of cube 

[ lll] ( c = a .J3, a - parameter of cubic 

lattice). Atoms of one grade are located on highly 
densed planes { lll} 
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A distance between two densely packed atomic layers A and A' is d =% ( c = a0 J3, a0
-

parameter of cubic lattice). Atoms on these layers are in identical positions. And atoms in layers A' and B 

. ~ 2 ~ 1 b~ I B ~ 1 ~ 2 b~ B' and C) are displaced from each other on p 1 = -a +- for layers ( A , ), or p II = -a +- - for 
3 3 3 3 

B' , C). Here a and b - vectors of hexagonal lattice on basic plane. A distance between these layers 

makes .5{
2

. 

A description of structure of diamond-like materials in hexagonal axes, excludes appearance of a 

problem associated with not identical deformation of materials on body diagonals [ 43]. 

Energy of interaction between atomic planes is calculated by means of interatomic potentials under a 

scheme presented previous work [ 46]. The aprioristic pseudo-potential [ 4 7] is used in calculations. In uniform 

model, from the first principles, deformations of diamond-like materials are presented at one axis compression 

and tension along direction [Ill]. 

The theory of pseudo-potential can be formulated in terms of pair potential, only in that case when ions 

are redistributed at constant average density of a material. 

By the energy of interlayer interaction, a theoretical strength of diamond-like materials is calculated at 

one axis tension and compression in case of deformation [ 48]. At small deformations when one may neglect a 

change of average density of a material, a calculation of theoretical strength on the basis of interatomic potentials 

is justified. 

In the present work we consider one axis deformation of materials when a volume per atom in a 

material remains constant. Changing one of parameters of hexagonal lattice, the second is defined from a 

condition of volume invariance. In this case the employment of pair interatomic potentials is justified for any 

possible deformation. 

A complete energy of electron- ion system can be written as 

(1) 

where U 0 - depends on volume, U1 (energy of zone structure and a part of electrostatic energy) depends on 

structure and it can be performed as a sum 

(2) 

energies of pair interatomic potentials; R; - interatomic distance. Energy of zone structure defines indirect 

effect between ions 

(3) 

Here V ( q) - pseudo potential of ions, q -wave vector and appearing functions & ( q) and X ( q) are defined 

in [9]; R; and R 
1 

- radius vectors of ions. 

Energy of zone structure (3) together with potential of direct interaction define a complete effective 

interaction among ions 
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) z2 2no I ~ ~) )d ~ cD(R =-+--
2 

exp(i q R Ubs(q q, 
R (8:rr) 

(4) 

where Z - a number of valent electrons, no - atom volume in elementary cell. 

Let's sum (1.4) on two parallel highly densed layers distant from each other on d and shifted from 

each other on vector p. For the energy of interaction of two layers (per square unit) we obtain [ ll] 

cD(d, p )=~I 2n°J[ <D(q)+ 
2

;rr z:] exp(i q=d)exp(i qj_ (R + p) )d q. (5) 
5 (2:rr) no q 

Here S - area per atom in highly densed layer; vector q is divided on two components q = - perpendicular 

highly densed plane and q j_ - parallel to it. Through R; -we designate lattice vectors lying in a plane of highly 

densed layer. To calculate integrals (5) we use equality 

(6) 

Through g j_ - we designate vectors of two-dimensional lattice inverse to considered plane of highly densed 

lattice with constant a . Sum in the right part of equality ( 1.6) equals zero if only vector q j_ does not coincide 

with one of the vectors of reciprocal lattice. 

If we substitute (6) in (5) we obtain 

where 

2:rr 
and q =-m· 

= d ' 

then 

cD(d, p) =!!___ IF(d,gj_)exp(i gj_p), 
2:rr 

m =0; ±1; ±2; ±3 ............ , 

cD ( d' p) = ,:' I IF ( d' g j_) cos (g j_ p) . 

To calculate F ( d, g j_) we have to build the pseudo-potentials V ( q). 

(7) 

(8) 

(9) 

Pseudo potential of ions, accounting for materials structure in hexagonal axises one may represent as: 

V(q)=±~A+Vse-iq8J +VAe-iq82 +Vse-iq83 +VAe-iq84 +Vse-riJ8s], (10) 

where VA, VB - atomic pseudo potentials of components (for diamond V 4 =VB ), 8 i ( i = 1, 5) radius 

vectors of atoms in elementary cell and q - radius vector of point of reciprocal space. For diamond-like 

materials J ; we obtain the following values: 
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~ 1 ~ 2 1~ 1 ~ 2 1~ 7 
5 =-c· 5 =-a+-b+-c· 5 =-a+-b+-c· 1 4 ' 2 3 3 3 ' 3 3 3 12 ' 

(11) 

~ 1 2~ 2 ~ 1 2~ 11 
5 =-a+-b+-c· 5.=-a+-b+-c 4 3 3 3 ' ) 3 3 12 . 

After substitution of ( 1.11) in ( 1.1 0), we obtain 

1 
[ 

-- 1 
][ ··cL 1

b- .. L ·c 1
-

2
b-l .. Ll -iqc- -1q -a+- -rq-c -rq -a+- -1q-c 

V(q) = - V + e 4 V l + e 3 3 e 3 + e 3 3 e 3 

6 A B ' 
(12) 

and 

V
2
(q)=i[V4 +VB cos(q= ~)r X 

x { 3 + 2 [ cos ( q = ~ + q _]_pI ) + cos(% q = c + q _]_ p II)+ cos( ~q = +q _]_Co I - p 11 )} 

(13) 

Table 1 presents calculated values of energy of interlayer interaction and lattice parameters (in atomic 

units) in equilibrium state of crystals and fig. 2 shows a dependence of stress vs. lattice parameter cas a 

material is deformed on axis c 

Table 1 Energy of interlayer interaction cD 0 and lattice parameters a 0 , c0 at equilibrium state of crystal; 

stars mean a~ , c~ experimental values of lattice parameters 

Crystal - cD . w-2 ao Co a~ c~ 0 

Diamond 0,25998 4,7969 12,007 4,76 11,86 

BN 0,22528 4,8423 12,144 4,89 12,0 

SiC 0,23109 5,735 14,372 5,817 14,23 

AlN 0,13385 5,808 14,549 5,85 14,58 

At known values of energy of interaction of layers strain tensor is defined from the ratio [ 45] 

1 acD(d,p) 
() = - ------'----''-----'-

= d ae- ' (14) 

where e _ - relative deformation, cD ( d, p) - energy of interaction of atomic layers of unit areas distant on d 
and shifted relatively each other on vector p . 

Energy of interaction of atomic layers as A, A' - ( cDC%, 0)) and A', B - ( cD c){2 , p)) differ 

almost by an order. Theoretical strength is calculated on ( 1.9) at energy cD (,5{
2

, p) in five times higher than 

at energy cD (%, 0). Thus in brittle materials with cubic structure and subjected to one axis tension along 

direction [ 111 ], microcracks at first appear between atomic planes { 111}, taking place on distance %. The 

material most likely fails on layers consisting from two atomic planes distant from each other on ,5{
2

. 

Functional dependence of stress vs. interplane distance for diamond is illustrated on fig. 2. 
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Fig.2 Dependence of stress cr vs. lattice parameter c for BN 

A general view of this dependence is identical to the investigated materials. The interval BD 
corresponds to a cohesion zone ( cD ( d, p) <0). To the left of a point A a function describes compression 

process and to the right - tension. The point B corresponds to strength at compression, and D at tension. 

5d 
At very small deformations a stress- strain curve is close to linear law, cr =E-. From this 

do 
ratio it is possible to define Young's modulus E. 

Values of theoretical strength cr;'wx , meeting deformation e1*1 1 at compression and cr 2 max, e1 11 at 

tension as well as Young's modulus E are presented in tab. 2. 

Table 2 Values of theoretical strength (GPa), Young's modulus (GPa) and strain rate at compression and 
tension 

Compression Tension 

O'"lll<lX * 
1 - eJJJ Ej 

max 
E2 ()2 eJJJ 

c 204,4 0,0975 1100 139,07 0,1456 1100 

BN 175,4 0,0978 970 119,24 0,1458 970 

SiC 147,56 0,0998 750 103,12 0,1459 750 

AlN 88,26 0,098 450 59,05 0,1460 450 

As it can be seen from the table, at one axis tension or compression a deformation corresponding to 

ultimate strength of diamond-like materials, possesses a certain value and does not depend on a material. 
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Surface energy of formed crack can be calculated proceeding from functional dependence of stress vs. 
interplane distance 

Jdnmx ( )d y= CJU U. 
do 

(15) 

Here d 0 - distance between basic planes without deformation ( d 0 = cj{ ), and dnwx - corresponds to 

interplane distance when stress reaches its maximum value [12]. 
Finally for surface energy we obtain the following ratio 

L1cD 2 r =------;;-. 7,78605 ·1 0 n/m (16) 
elll 

where L1 cD = cD ( dm"x, p)- cD ( d 0 , p) - energy of deformation. The following values of energy of 

deformation are obtained at tension: L1 <D = 0,22195 ·1 o-l ( 0,8081 ·1 o-3
) for diamond, 0,193595 ·1 o-2 

( 0,698·10-3
) - for boron nitride, 0,189·10-2 

( 0,855·10-3 
) -for silica carbide and 0,113032·10-2 

( 0,44764·10-3 
) - for aluminium nitride (in brackets we put the values of energy of deformation of 

compression). ~c = 2 y is called as critical value of rate of release of deformation energy. 

With calculation ~c thus there is a transition from values of micro level to parameters of macro level. 

Calculation ~c at micro level enables to define more precisely macrocharacteristics of materials, for example 

K 1c -fracture toughness coefficient at use of a ratio from macro-mechanics [51] 

Values ~c, K 1c at tension and compression are available in table 3. 

Table 3 Macroscopic characteristics of diamond-like materials at tension (I) and compression (II) 

~c n/m K 1c MPam1
'
2 

I II I II 

Diamond 23,6728 12,839 5,1067 3,76075 3,4-8 [14] 

BN 20,6484 11,0914 4,479 3,2832 ( 3,5±0,5) [15] 

SiC 20,1584 13,5858 3,89 3,194 -

AlN 12,056 7,113 2,33 1,79 -

Work [16] obtain the values K 1c for single crystal of cubic boron nitride in terms of (l-4) MPa*m12 

depending on the amount of impurities content. The calculated values ~c and K 1c, defined through 

deformations and energy of interaction of atomic layers, are found in terms of scattering of experimental values. 

Thus, the theoretical strength of diamond-like materials in determined crystallographic direction depends on a 

mutual positioning of cooperating layers. Densely packed atomic layers which are displaced relatively each 

other (on vector p 1 , or p II), are more stable at loadings, than not displaced layers. The strength in the first 

case is higher by an order than in the second one. Thus, at loadings along a direction [Ill] in diamond-like 

materials the cracks may appear, first of all, between densely packed atomic layers distant on %. 
The calculated fracture toughness coefficient is in terms of accuracy of experimental values. 
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Critical deformation of diamond-like materials along direction [ lll] is a characteristic of structure and 

does not depend on a concrete material. 

2. Investigation of influence of scale factor on theoretical strength of nanoparticle with 

diamond-like structure 

A wide spectrum of practical applications of nanoparticles as base structural units of nanocomposites 

makes a theme of investigation of small particles actual. Since 801
h years the interest to small particles has brought 

to a lot of publications [55-60]. 

A direct experimental investigation of physico-mechanical properties of nanoparticles is rather complicated, as to 

obtain authentic results is not that simple methodical problem because of possible influence of scale factor on 

strength characteristics of tested samples [56]. Modeling of physico - chemical processes is complicated for these 

systems by a number of reasons. On the one hand, usual methods of quantum chemistry appear doubtful in 

application to a description of systems containing hundreds of atoms, and on the other hand, a macroscopic 

thermodynamics is inapplicable to small particles also because of impossibility of division of bulk and surface 

properties [57]. 

Among works of the last years a special place is occupied by publications which are devoted to 

definition of surface energy depending on particles form and size, with use of elements of macro- and micro -

theories [57 ,58]. 

In work [58] to account for surface energy of nanoparticles, depending on their size and forms, the 

authors use a thermodynamic model. Surface energy is expressed through a surface tension at equilibrium 

condition of system. A consequence of given assumptions is, that all small particles are compressed by 

Laplacian pressure. Meanwhile, the experiment shows that not always lattice parameter for crystal particles 

decreases with a reduction of their sizes. The situations when lattice parameter does not vary even grows are 

rather often or. It means that at reduction of linear sizes of a particle surface forces are not always reduced to 

Laplacian pressure. At analysis of surface forces it is necessary to distinguish an equilibrium case when a body 

has the form corresponding to a minimum of system free energy and, nonequilibrium when it does not have this 

form. The body of nonequilibrium form under the action of Laplacian pressure aspires to obtain the equilibrium 

form [57]. In work [59] the authors define surface energy of nanoparticle through energy of break of bond 

between atoms. However, in this model the calculated surface energy depends only weak on type of structure of 

nanoparticles. 

In works [61-62] authors assert that a basic arbitrariness in definition of nanoparticle size brings to 

ambiguity in definition of its many mechanical characteristics. 

A problem of this investigation - is to build (being based on the method of aprioristic pseudo-potential) 

the analytical model which adequately would describe mechanical properties of nanoparticles in view of a role 

of advanced surface of particle. 

For a description of a process of deformation of nanoparticles at one axis loading in this work we 

suggest to use a value of energy of interaction between atomic planes (perpendicular to axis of loading). 
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As nanoparticles according to [ 63 ], possess properties of a crystal; thus let's describe a structure of 

nano-diamond in hexagonal axes, chosen for the axis Z a body diagonal of cube [ lll]. 

Energy of interaction between atomic planes is calculated by means of interatomic potentials which are 

built under above said scheme. 

As models of nanoparticle let's use: a) nanoplate with final number of basic planes ( l) on spatial axis 

Z ; b) infinite nanobar with a basis of limited size on spatial axes X, y , and c) nanobar with limited 

nanosizes on three spatial axes. 

Earlier it was shown that microcracks first of all appear between atomic planes { lll}, distant on %, in 

massive brittle materials with cubic structure and subjected to one axis tension. The material most likely fails on 

layers consisting of two atomic planes distant from each other on ,5{ 
2 

. 

Fig. 3 schematically shows a nanoplate consisting of certain number of atomic planes (as pieces). Shaded 

strip correspond to strongly bonded atomic planes distant on ,5{
2 

(let's account for those as certain structural 

unit). Nanoplate is represented as a set of parallel structural units distant from each other on %. 
l=2 

I 

l=4 l=S I 
I 

II 

l=6 I 

II 

Fig. 3 Location of basic planes depending on their quantity l 

At loading ofnanoplate, a distance between neighboring layers changes. In ideal case (infinite material on 

three directions) the energy of interaction among those is cD 0 . For materials of limited size at calculation of 

energy of interaction among layers it is necessary to account for energy of external surfaces. In case of 

nanoplate we have two closing (atomic) surfaces. Generally the energy of interaction between neighboring 

structural units i. i + 1 consists of two parts 

(17) 



Here L <D fi+l - a share of energy of external surfaces. 
j 

Assuming, that external surface of nanoparticle possesses the energy which equals a half of energy of 

interlayer interaction (with the nearest absent atomic plane), it is possible to calculate the energy of interaction 

of atomic planes for chosen structural models. 
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If surface energy plays the main role at definition of mechanical characteristics of materials thus there appears a 

question about a presence of different values of theoretical strength of material depending on distance up to a 

surface. Closer to a surface a material has the higher strength than in volume. A solution of this problem is 

associated with calculation of energy of interaction between structural units depending on a distance of free 

surface. 

Let's consider a semi-infinite sample which free surface coincides with highly densed plane. If for ideal 

case (infinite sample) the energy of interaction between neighboring structural units is <D 0 , because of a 

presence of energy of free surface of a particle, its value changes. Let's introduce a term "meso layer", consisting 

of two parallel structural units, a distance between those makes 14 . 
To define the energy of interaction between structural units at presence of free surface, we suggest use 

averaging on two neighboring mesolayers under the following scheme: 

Let for lst and 2nd mesolayer (fig. 3) the energy of interaction in zero order is <D 0 , and a free surface has 

1 
energy - <D 1 • Let's define the energy of interaction of l st meso-layer as a simple average, from ratio 

2 

(18) 

For 2nd meso-layer the energy of interaction we define falling from refined value of energy of l st meso-layer 

(19) 

and for j layer 

(20) 

Thus a distribution of surface energy on meso-layers is obtained depending on distance of external surface. 

If the object has limited size on spatial axis z then it is necessary to account for the influence of energy of 2nd 

<D 
surfaces. Let the second surface has the energy ____2_. The method of calculation of distribution of energy of 

2 

interaction in view of 2nd external surface is the same, as above described. As a result we obtain for i layer 

(21) 

where j - a number of layers in nanoparticle. A number of layers j and a number of atomic layers l are 

connected with each other 



l = 2 j , then cD 1 = cD 2 , 

The last item in (2.5) provides the law of preservation of full energy of system at limited number of atomic 

planes l . The ratio (2.5) can be used for calculation of energy of interlayer interaction both for bulk samples 

and for nanoplates as well. 
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In case of infinite nanobar (the basic plane of nanoparticle has sizes n a and m b (fig. 4), and the 

amount of those is infinite, n, m - integers), we account for energy of lateral surfaces. 

Fig.4. Basic plane of diamond-like materials in hexagonal axises a, b, axis c is perpendicular to the 

plane 

According to problem condition, we calculate mechanical characteristics at one axis loadings, using the 

energy of interaction between structural units. The last are perpendicular to the axis of loading. Therefore, in lieu 

of lateral surfaces we consider lateral atomic lines on planes. The energy of interaction between lateral atoms, 

located on neighboring planes, represents a required share of surface energy. Thus, the energy of interaction 

between atomic layers (2 .1) can be presented as 

(22) 

where N 1 -a number of atoms on planes located inside a nanobar, N 2 - extreme atoms of these planes, cD B -

energy of interaction between extreme atoms in neighboring layers. In this case 

N 1 =(n-2)(m-2) and N 2 =2(m+n-2) (23) 

Accounting for a number of bonds of extreme and angle atoms of nano-diamond on basic planes for energy of 

meso-layer interaction we obtain 

[ 
1 1 1 8 l cD =cD 0 1+-(-+-)--- , 
3 m n 9mn 

(24) 

when a basic plane is a parallelogram with sides ma and n b , and 



[ 
1 1 1 5 l cD=cD 0 1+-(-+-)+--, 
3 m n 3mn 

for a rectangle with sides ma J3 and n b and with equal basic square. 
2 

If m, n----+ CfJ, then cD ----+ cD 0 . 

In case of limited bar or nanobar for i layer we obtain 

* * 1 * 1 1 * *) cD =cDo +cD1 -.-1 + cD2 -. -?- + 1 ( cD1 + cD2 
I 2'+ 2)+--l j • 2)+ 

Here cD = cD I +-(- +- ---* [ 1 1 1) 8 ] 
k " 3 m n 9mn ' 

or 

[ 
1 1 1 5 l cD=cD 0 1+-(-+-)+--, 
3 m n 3mn 

(k=O, 1, 2) 

(25) 

(26) 

(27) 

(28) 

At known values of energy of meso-layer interaction, a strain tensor is defined from the ratio 

1 8cD(d) 
() = - -----'-----'-

= d ae_ ' (29) 
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where e = - relative strain rate, cD (d) - energy of interaction of atomic layers in elementary cell distant on d . 

Dependence of theoretical strength on distance up to external surface of nano-diamond ( i -a number pf meso­

layer) from size of a basic plane ( m, n ), from nanobar height, or nanoplate thickness ( l, at fixed number of 

meso-layer) is illustrated in fig. 5-7. 
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Fig.5 Dependence of theoretical strength of diamond nanoparticle vs. distance from external surface ( vs. a 
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Fig. 7 Dependence of theoretical strength of nano-diamond vs. length (or l - a number of atomic layers) 

nanobar, when I - m = n = 250 , and II - m = n = 25 . In both cases i = 3 

In a case of nanobar, consisting from 120 highly dense packed atomic planes, on distance from a surface 

h1 =a* J3 50 
( a* -parameter of cubic lattice), value of theoretical strength at compression and tension is 

6 
minimum (see fig. 3). At even values l a theoretical strength varies depending on distance up to external 
surface as symmetric function that can not be said about nanoparticle, containing odd number of densely packed 
atomic layers (see fig. 1). At odd number of atomic layers external surfaces of nanoparticles possess different 
energy that results in asymmetrical distribution of energy on nanobar length. At increase of a number of atomic 
planes a common picture of distribution of energy does not vary. In case l = 1200, on distance from the first 

h * r::;3 50 h * r::;3 l h . surface 1 =a \1 _; and from the second surface ? =a \1 _; - 1 , a value of theoretical strength does not 
6 - 6 

vary and coincides with a value of theoretical strength for massive samples (tab. 4). 
Table 4 presents values of theoretical strength at compression o-1 and tension o-2 for diamond-like 

nanoparticles as nanobar, depending on its size and form of basis (rectangular or parallelogram). 

Table 4 Value of theoretical strength (GPa) for diamond-like nanoparticles depending on their size and form 
of its basis (basic plane). Here l - a number of atomic layers, m, n - integers responsible for size of 

nanobar basis and i - a number of meso-layer describing a distance to external surfaces 

Nanobar with Nanobar or nanoplate with parallelogram basis 
rectangle basis 

1 = 1 00; m = n = 25 1 = 100;m = n; 1 = 120; m = n = 2500 

i=2 i = 2 30 -::;i -::;570 

o-1 o-2 o-1 o-2 o-1 o-2 

c 236,709 161,048 235,768 160,4 204,4 139,07 

BN 203,14 138,087 202,3 137,5 175,4 119,24 

SiC 170,88 119,42 170,203 118,94 147,56 103,12 

AlN 102,208 63,385 101,802 68,113 88,26 59,05 

Let's note, that at values m = n = 2500, theoretical strength at compression and tension for nanoplate with the 

basis of rectangular or parallelogram, do not differ from each other. Investigation (computing experiment) 
showed that at values m = n :2': 500 a value of theoretical strength (at tension and compression) does not depend 

on the form of basic area. Comparative calculations by an example of SiC nanobar with the basis of rectangular 

and parallelogram is presented in tab. 5. 

Table 5 Dependence of theoretical strength of SiC nanobar vs. the form of basic area (I- parallelogram, II -

t l ) rec ang.e 
Form m=n m =n m=n m =n m =n m=n m =n 

= 25 =50 = 100 = 150 =200 = 300 = 500 

I o-1 180,023 179,845 178,709 178,323 178,129 177,934 177,777 

I o-2 127,207 125,68 124,89 124,62 124,486 124,349 124,24 



II 0'"1 182,749 180,027 178,75 178,34 178,14 177,939 177,777 

II 0'"2 127,715 125,80 124,92 124,63 124,49 124,353 124,24 

3. CONCLUSION 

- Strength of nanoparticles at one-axis deformations strongly depends on particle size along the axis of 
loading and distances from external surface of particle; 
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- Theoretical strength of nanobar (nanoplate), at even value of atomic planes, along the axis of 
deformation on identical distances from external surfaces, has identical values. It is associated with identical 
energy of free surfaces of nanoparticle, unlike nanoparticles with odd number of planes. For nanoplate with 

. h * r;;3 50 . . h . s1ze :2': a '\I_;-, a value of theoretical strength on d1stance - from external surface always asp1res to a 
3 2 

value for massive samples. 
- Theoretical strength does not depend on the form of nanobar basis of at values of basis area 

S :2':44200a* 2
• 

IV. Ballistic limit velocity. Theory and Experimental Approximation on the Base of Indentation 
Technique (A4 New Empirical Law for Critical Velocity of Penetration) 

TABLE OF SYMBOLS 

u 

R 

t 

-density ofKEP material; 

-density of target material; 

-projectile length; 

-velocity of movement of a contact surface; 

- static penetration resistance of target material (defined by analytical solution of a problem of 
expansion of spherical cavity); 

-time, s; 

- impact velocity; 

-ballistic limit velocity; 

- target thickness; 

-yield stress of target material; 

-Vickers hardness of target material; 

-Meyer hardness of materials; 

-plasticity characteristic of target; 

-projectile diameter; 

-projectile mass; 

bottom indexes t and p respectively are referred to target and projectile. 
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INTRODUCTION 

In a problem of interaction of kinetic energy projectile (KEP) with a target a calculation of ballistic limit 

velocity Vcr represents a significant scientific and theoretical interest. A process of penetration of indenter into 

target has much in common with a process of indentation of a material with rigid indenter. In this work, being 

based on the representations about indentation process elaborated by authors the problem of calculation of 

ballistic limit velocity is submitted on the basis of experimental results obtained at indentation (microhardness 

HV and plasticity characteristic b' H). The theory of calculation Vcr for a case of not deformable projectile is 

offered as well. For the common case (deformable and not deformable projectile) empirical equations which 

enable to calculate Vcr with satisfactory accuracy are suggested 
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1. Dynamic tests of materials 

In this work we investigated a wide class of target materials: aluminum alloys (standard and high­

strength, developed in IPMS NAS of Ukraine), titanium alloy, steels (soft and strengthened) and ceramics. A 

choice of objects of investigations is stipulated by a necessity to obtain the materials with a wide range of 

physico-mechanical properties. It, in its turn, was necessary to obtain rather representative experimental data file 

on the basis of which it would be possible with a rather good reliability to define regularities for ballistic limit 

velocity of penetration. Thickness of targets, geometrical sizes and a material of projectile were varied as well. 

A chemical composition of the investigated alloys is presented in table l, and physicomechanical 

properties - in table 2. 

Samples for tests represented the plates of lOOxlOO mm of various thicknesses, which were fixed in 

holder's slot. The holder was steel thermo-treated plate (HRC 40) with thickness of 40 mm. The plate has 

square reach-through hole of 50x50 mm for free flight of kinetic projectile in case of penetration of tested 

sample. The holder, in its turn, was rigidly installed in the frame of machine (Fig.l ). With the help of this holder 

the sample can be located in required position i.e. to provide a hit of projectile in certain place of the sample 

(with an accuracy± 5mm) and under a certain angle to sample plane (in this work this angle was 90°). 

Fig 1 Equipment for dynamic tests 

A distance from a channel cut of missile machine to a sample plane made l 0 m. Projectile velocity was 

fixed by means of serially produced device "Polet" with an accuracy of 0 .l m/s. A principle of velocity 

registration- fixing of time of projectile flight between two photo sensors established on a distance of 0.5 m. 

With the purpose to increase a reliability of test results a thick polyethylene film was mounted behind a 

tested plate on distance of 30 mm. The plane of film tension was in parallel to a plane of plate. The fact of plate 

penetration was considered as defined at presence of reach-through hole in the film. 
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2. Theoretical estimation of ballistic limit velocity 

Calculation of ballistic limit velocity of a material for a case of not deformable projectile (when its 

hardness considerably exceeds the hardness of target) is suggested. A theoretical substantiation is given below. 

The equation of projectile movement in infinite target is considered and it looks as: 

du 1 2 ( PpLp-=--p1u -R, u O)=us· 
dt 2 

(1) 

This equation, in essence, is a special case of the equation of V.P. Alekseevskii [ 1] if in the last to assume that 

projectile is not deformable. 

Equation ( 1) is an equation with divided variables and its solution can be presented as 

Pr t = _!_ (arctg u 5 - arctg ll_), 
2LpPp a a a 

2 2R 
a=-, 

Pr 

or 

i2R 
a= (2) 

\\! Pr 

For penetration depth P from equation (1) we obtain 

(3) 

If from (2), (3) to exclude u , then we obtain a dependence of penetration depth vs. time t 

Ballistic limit velocity Vcr is approximately determined from (3) as impact velocity us(= Vcr), at which 

P = h1 and u = 0 (i.e. projectile stops), where h1 -target thickness. Therefore from (3) we obtain 

(4) 

from this equation for velocity vcr we have 

'2R [ [ h -1 = . exp Pr t 

Pr PpLp 
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Introducing a designation a= Prhr let's re-write formula (5) as: 
PpLp 

2 2R ( a ) vcr =-· e -l (5') 

Pr 

For ideal elastic-plastic material for R one may use formula [22] 

(
2 2E) R = Y 3+ln 

3
y . (6) 

At the same time R may be estimated as the function of HV . In work [3] it was shown, that at 

estimation of target resistance against penetration of a kinetic energy projectile it is necessary to account for 

plasticity characteristic 15H determined (as hardness HV ), at indentation of a material by Vickers's indenter 

[4]. A product of resistance of target material R on plasticity characteristic 15H (or product HM · 15H) enables 

to allocate a part of resistance associated with plastic deformation of a material at penetration of kinetic energy 

projectile. 

In a view of the above said, 3 variants of estimation R are carried out with the aim of achievement of 

best agreement of theory and experiments (table 2). 
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Table 1 Chemical composition of target material 

Material Material 
Chemical composition, mass.% 

HV, 
OH groups marking GPa 

6112 AI- 1Mg- 0.3Cu- 0.6Si 0.84 0.92 

Al-alloy 
AM!-5 Al-5Mg 0.80 0.93 

8112 AI- 8Zn- 2.1Mg- 1.9Cu- 0.15Zr 1.80 0.84 
8312 AI- 8Zn- 2.1Mg- 1.9Cu- 0.15Zr- 0.12 Sc 1.9 0.82 

Steel124 Fe- 0.38C- 0.25Si- 0.035Cr- 1.6Mn- 0.013 Ni- 0.41Mo 3.7 0.85 
Steel600 Fe- 0.68C- 0.29Si- 0.61Cr- 0.77Mn- 1.87 Ni- 0.32Mo 6.72 0.71 

Steel40 
Fe- 0.38C- 0.36Si- 0.08Cr- 0.9Mn- 0.12 Ni- 0.12Mo-

2.02 0.922 
0.07Cu Steel 

High hardness 
Fe- 0.25C- 0.36Si- 0.27Cr- 0.9Mn- 1.0Ni- 0.3Mo-

steel 
0.19Cu 

3.45 0.866 

Ti-alloy Ti-alloy Ti- 5.1V- 0.3Fe- 0.4Si- 3.0Al 3.22 0.854 
Ceramics SiC Self-bounded silica carbide 22 0.35 

Metallic plates Ill Steel45 raw (TP free) 1.81 0.93 
(dams), I12 Steel 45 (hardening + tempering) 3.22 0.88 

used I13 AMG5 0.80 0.93 
for High hardness steel 

experiments I14 Fe- 0.25C- 0.36Si- 0.27Cr- 0.9Mn- 1.0Ni- 0.3Mo- 3.45 0.866 
with ceramics 0.19Cu 



Table 2 Results of dynamic tests of materials for the case of «not deformable projectile» 

Material Target dp· LP, Pt, (5Ht CTo.2, R(3) vactua/ 

Material thickness HVI HVP (5Hp 
cr 

111111 Mm g/sm3 GPa GPa 
class h1 ,mm nP~ r;p, 

6112 8 7.62 26 2.7 0.84 0.92 1.6 0.93 0.26 1.406 '"313 
"' AMOS 5 9 12 2.7 0.80 0.93 1.6 0.93 0.25 1.372 387 >.. 
0 
:; 8112 8 7.62 20.5* 2.8 1.8 0.84 1.9 0.93 0.56 2.503 438 

I 

:;;: 8312 8 7.62 20.5* 2.8 1.9 0.82 1.9 0.93 0.59 2.561 456 
AMOS 5 7.62 16 2.7 0.80 0.93 1.78 0.93 0.25 1.372 290 
Steel40 40.5 12.7 51.6* 7.8 2.02 0.922 6.55 0.746 0.4 2.388 845 

"' High ~ 16.5 12.7 51.6* 7.8 3.45 0.866 6.55 0.746 0.95 4.660 685 ~ .... hardness steel <J)_ 

Steel45 3 7.62 12.5* 7.8 1.81 0.93 1.6 0.93 0.5 2.409 470 
Ti-alloy Ti-alloy 17 12.7 51.6* 4.6 3.22 0.854 6.55 0.746 1.0 2.849 490 

*-for given materials in calculations we used core length but not projectile as jacket fails at penetratton 

R(l)= HM · (5H 

R(2) = y['!-_ + ln[ 2E J~· (5 H (y = CTo.J 
3 3Y j 

R(3)= Y -+In -[2 [2£ J~ 
3 3Y j 

a Prhr 

PpLp 
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Calculation by formula (5) 

vcc;:z!cu/ ( 1) vcalcul (2) 
v(~alcul ( 3) cr 

m/s 
111/s 111/s 

251 326 340 
290 379 393 
418 522 569 
425 524 579 
249 325 337 
784 854 889 

558 671 721 

355 409 424 
526 515 557 
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The best coincidence of theory and experiment gives the variant (2) in which the parameter 15 H is accounted 

for. In this case experimental and theoretical results (obtained without fitting parameters) almost coincide. 

As it's already been said above, the suggested theoretical estimation is applicable only for a case when 

projectile hardness considerably exceeds hardness of target. It is well seen at the analysis of results for alloys 

8112 and 8312 where projectile and target hardness are close. Divergences of theory and experiment here are 

more essential. 

3. Empirical estimation of ballistic limit velocity 

For more common case of an estimation of ballistic limit velocity (including a deformable projectile) 

semi-empirical formulas are suggested. 

On the basis of available in literature and obtained by authors results the following empirical equations 

for parameter vcr are suggested: 

V 2 (-, ht 
cr = !Pt-

p 

vc;_ =C2Pt':J_(HVI5H)t 
p 

V2 -C ':J_ (HVI5H)t 
cr- 3Pt 

P ( HVI5H Jp 

(7) 

(8) 

(9) 

cl ' c2' c3 are the empirical constants determined by available experimental results (in our case - according 

to tests of l 0 different materials) by determination of average arithmetic value. P is so-called static pressure of 

projectile on target. 

p = -'-n~P_ 
;rrd; I 4, 

where m P and d P -projectile's mass and diameter respectively. 

Experimental results and calculations under formulas (7), (8) and (9) are presented in table 3. 

Formula (7) is most simple and demands a minimum of initial data for calculation Vcr which are easy to 

obtain by direct measurement and weighing. However, a coincidence of calculated and experimental data is not 

enough. The error reaches 40 % and higher (for steel 600 in particular). Though for ceramics and high-strength 

aluminum alloys (8112 and 8312) a quite good conformity is observed. 

Formula (8) provides as a whole the higher accuracy (especially for aluminum alloys) though the values 

of micromechanical properties of target (hardness and plasticity characteristic) are necessary for calculation. For 

ceramics this formula does not work (an error up to 80%). 

And at last there comes formula (9). For calculation, besides micromechanical properties of target, 

knowledge of projectile properties is required. Calculation under this formula gives the best agreement of 
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calculated and actual values Ver. The error of calculation does not exceed 5-6% for metals and 8-10 % for 

ceramics and only in some cases reaches 15-20% for ceramics SiC (the explanation of this is given below). 

The analysis of the above-stated empirical dependences enables to draw the following conclusion. For 

the most correct calculation Ver it is necessary to account for mechanical properties of both target and projectile 

(besides their geometrical sizes as well as their density and mass). Therefore further it is expedient to use 

formula (9) for calculations, as it provides the greatest accuracy. 

It is should be noted that at calculation Ver for composite targets "ceramics- dam" a ratio was used: 

2 2 2 
veomp = veer + vbaek ' 

where veer and vbaek are the ballistic limit velocities of penetration of ceramic target and dam 

respectively. 



Table 3 Dynamic test results 

Materials Alloy Pr hf mP dp LP HV1 sf!r 
HVP 

sf!p 
vactual 

cr 
Class g/c1113 111111 g mm mm GPa GPa 

6112 2.7 8 7.9 7.62 26 0.84 0.92 1.6 0.93 

"' AMf5 2.7 5 5.9 9 12 0.8 0.93 1.6 0.93 ... 
.s 8112 2.8 8 3.6* 7.62 20.5* 1.8 0.84 1.9 0.927 -; 

8312 2.8 8 3.6* 7.62 20.5* 1.9 0.82 1.9 0.927 I 

:;;: 
A MrS 2.7 5 5.5 7.62 16 0.8 0.93 1.80 0.93 

Steel124 7.8 4.5 4.8* 7.62 26* 3.7 0.85 1.78 0.931 

Steel600 7.8 4.5 4.8* 7.62 26* 6.72 0.71 1.78 0.931 

Stcel40 7.8 40.5 30.1 * 12.7 51 .6* 2.02 0.922 6.55 0.746 

"' High hardness steel 7.8 16.5 30.1 * 12.7 51 .6* 3.45 0.866 6.55 0.746 ;:: 
'l) Ill 7.8 3 4.8* 7.62 26* 1.81 0.93 6.55 0.746 .... 

IJ1 Ill 7.8 3 2.3* 7.62 12.5* 1.81 0.93 1.80 0.93 
112 7.8 3 2.3* 7.62 12.5* 3.22 0.88 6.55 0.746 
114 7.8 4.5 3.6* 7.62 20.5* 3.45 0.866 6.55 0.746 
114 7.8 4.5 30.1 * 12.7 51.6* 3.45 0.866 6.55 0.746 

Ti-alloy Ti-alloy 4.6 17 12.7 5 1.6* 
3.22 

0.854 
6.55 0.746 

30.1 * 
SiC 3.09 8 4.8* 7.62 26* 22 0.35 6.55 0.746 
SiC 3.09 6 3.6* 7.62 20.5* 22 0.35 6.55 0.746 
SiC 3.09 10 30.1 * 12.7 51.6* 22 0.35 6.55 0.746 

"' SiC 30.1 * 51.6* u 3.09 12 12.7 22 0.35 6.55 0.746 "8 SiC 3.09 15 30.1 * 12.7 51.6* 22 0.35 6.55 0.746 eo: ... 
SiC Ill 8-L3 4.8* 7.62 26* 6.55 0.746 'l) 

u 
SiC _L II 2 8-L3 4.8* 7.62 26* 6.55 0.746 
SiC _L II 3 8+5 4.8* 7.62 26* 6.55 0.746 

SiC-r-114 6-r-4.5 3.6* 7.62 20.5* 6.55 0.746 
* for given materials in calculations we used length and mass of core but not projectile, as jacket fails at penetration; 

Projectile's density Pp in all cases was accepted as 7.8 g/cm3
. 

Values of empirical constants C1 , C2 and C3 were 1 .52x 106 m2/s2
, 0.79x 106 m/kg and 1.69x 106 m2/s2 respectively. 

m/s 

323 
387 
438 
456 
290 
689 
916 
845 
685 

<280 
470 
328 

-

-

490 

-

-

-

-

-

660 
710 
660 
730 

50 

vcalcul (1) 
cr 

vcalcul ( 2) 
cr 

vcalcu/(3) 
cr 

empirical empirical empirical 
111/s 111/s m/s 
435 276 330 
474 295 353 
457 405 447 
457 411 453 
412 256 289 
508 649 737 
508 799 906 

1219 1200 794 
779 970 642 
412 385 255 
542 507 574 
412 500 331 
582 726 480 
406 507 335 

606 
725 

480 
423 846 560 
423 846 560 
381 763 505 
418 836 553 
467 934 618 
590 930 615 
590 983 650 
526 869 606 

719 1115 738 
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This equation we obtained from the law of conservation of energy. It was supposed, that kinetic energy 

of projectile was consistently spent on penetration through ceramic target and dam. Projectile's mass in a 

process of penetration was considered as constant. It, probably, not absolutely meets a reality. Projectile while 

going through ceramics loses a part of mass and only the rest part of projectile influences on a dam. Therefore a 

real value Vzmck (and vcomp) must be higher than calculated one). It takes place. 

Let's get back to formulas (7) - (9). Approximately while considering a projectile as a cylinder, let's 

:rrd2 
find its volume V = _P_ LP, where LP is the projectile's length. Density of projectile's materials is: 

4 

then p P = P/ L P or P = p PL P . By introduction of designation a , used m 

theoretical formula ( 5 '): 

Prhr a=--, 
PpLp 

formulas (7)- (9) one may write as: 

vc;. = C2a( HV5H )1 

vc;. = C3a ( HV5H Jr 
(HV5H )p 

(7') 

(8') 

(9') 

The empirical dependences written down in this form obtain some physical sense. Let's decipher 

formula (9 '), as the most correct. 

Let's note, that parameters a in formulas (7') - (9') and (5) are completely similar. And accounting for 

that at a<< 1 (that takes place in our case) exp a -l ~a a certain similarity between the above said formulas 

is observed. A difference of formula (9') is that it accounts for projectile properties that are required for our case 

when a projectile can be deformed. 

Also it should be noted that the authors of this project had introduced a concept of material resistance to 

penetration, determined as HV · 5H [64]. Thus (HV · 5H )1 is the resistance against penetration of target 

material (which is used here in lieu of that one calculated by formula (6)). By analogy let's introduce a concept 

(HV · 5H )P as the penetrating ability of projectile material. 

In view of it, it is possible to say that a square of ballistic limit velocity is directly proportional to 

specific surface mass of target and resistance to penetration of target material and inversely to specific surface 

mass and penetrating ability of projectile material (formula (9')). 
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The constant in equation (9') is numerically equal to a square of ballistic limit velocity of penetration of 

a target by projectile made from the same material and with a length equal to target thickness. 

4. Comparative characteristic of dynamic resistance of different materials 

Being based on the obtained experimental results and formula (9) the estimation of dynamic resistance 

of investigated materials is carried out. As a criterion a critical value ( p 1h1 )cr of target material (representing its 

specific surface mass) at which the material withstands an influence of projectile of certain type moving with a 

speed VP is accepted. Along with it a critical thickness of target material h1 cr is defined. Results of calculations 

are presented in table 4. 

The obtained data witness that the least dynamic resistance is attributed to soft aluminum alloys. Further 

come high-strength aluminum alloys and soft steel 40. Then (in terms of increase of dynamic resistance) we 

have titanium alloy and high-strength steel. Then - super high-strength steel 600. And at last ceramics SiC 

which possesses the best dynamic resistance from the investigated materials. It should be noted, however, that in 

practice the advantage of ceramics is not that impressive. The reason is that ceramics requires so-called "dam" 

(usually - a steel plate), providing for a required rigidity for tested sample and interfering its fracture 

immediately from a dynamic impact. A presence of dam brings a parameter p 1h1 cr to increase for a composite 

target "ceramic+ dam" (see table 4). 



Table 4 Dynamic resistance of materials against penetration of different projectiles 

Projectile 
material 

HVr 
OPa 

LP 
mm 

vp =700 m/s vp =1000 m/s 
Target 

material (5 Ht 
Pp 

g/sm3 
(!IV· ()II )P Pr 

g/sm3 (ph )fer h/cr (pht,. I h/cr 

6112 
AMOS 
8112 
8312 
Steel 124 
Steel600 
Steel40 
High hardness 
steel 

Ti-alloy 
SiC 
6112 
AMOS 
8112 
8312 
Steel 124 
Steel600 
Steel40 
II igh hardness 
steel 

Ti-alloy 
SiC 
6112 
AMOS 
8112 
8312 

...., 
a-, 
c 
II 
~ 

,....::00 
'lJ 
'lJ ' .... e:: 
"'~ ¢::1.-' 
0 a-, 

rJ] • ..... 
II 

>"" 
= '-' 

on 
t-c 
II 

.....:: "" 
~t.S .... 
"' ":::1 of 
'lJ ~ 
~ 1.-' 

"::ion :... on 
e::~ 
II: II 

> 
= '-' 

on 
t-

lf . "" 

0.84 
0.8 
1.8 
1.9 
3.7 

6.72 
2.02 

3.45 

3.23 
22 

0.84 
0.8 
1.8 
1.9 
3.7 

6.72 
2.02 

3.45 

3.23 
22 

0.84 
0.8 
1.8 

0.92 7.8 26 1.67 2.7 
0.93 7.8 26 1.67 2.7 
0.84 7.8 26 1.67 2.8 
0.82 7.8 26 1.67 2.8 
0.85 7.8 26 1.67 7.8 
0.71 7.8 26 1.67 7.8 
0.92 7.8 26 1.67 7.8 

0.87 7.8 26 1.67 7.8 

0.85 7.8 26 1.67 4.6 
0.35 7.8 26 1.67 3.1 
0.92 7.8 26 4.88 2.7 
0.93 7.8 26 4.88 2.7 
0.84 7.8 26 4.88 2.8 
0.82 7.8 26 4.88 2.8 
0.85 7.8 26 4.88 7.8 
0.71 7.8 26 4.88 7.8 
0.92 7.8 26 4.88 7.8 

0.87 7.8 26 4.88 7.8 

0.85 7.8 26 4.88 4.6 
0.35 7.8 26 4.88 3.1 
0.92 7.8 51.6 4.88 2.7 
0.93 7.8 51.6 4.88 2.7 
0.84 7.8 51.6 4.88 2.8 ..... ::t: 

~ 00 1.9 0.82 7.8 51.6 4.88 2.8 

g/sm2 mm 
12.7 47.2 
13.2 49.0 
6.5 23.3 
6.3 22.6 
3.1 4.0 
2.1 2.6 
5.3 7.6 

3.3 4.2 

3.6 7.7 
1.3 4.2 

37.1 137.5 
38.6 142.8 
19.0 67.8 
18.4 65.8 
9.1 11.7 
6.0 7.7 
15.4 19.8 

9.6 12.3 

I 0.4 22.6 
3.7 (4.8*) 12.1 

73.7 272.9 
76.5 283.5 
37.7 134.5 
36.6 130.5 

Steel124 .; of 3.7 0.85 7.8 51.6 4.88 7.8 18.1 23.2 
'lJ ~ 

Steel600 = 0 6.72 0.71 7.8 51.6 4.88 7.8 11.9 15.3 
<JJ on 

Steel40 'E or~ 2.02 0.92 7.8 51.6 4.88 7.8 30.6 39.2 

g/sm2 

26.0 
27.0 
13.3 
12.9 
6.4 
4.2 
10.8 

6.7 

7.3 
2.6 

75.8 
78.7 
38.7 
37.6 
18.6 
12.3 
31.4 

19.6 

21.3 
7.6 (9.8*) 

150.4 
156.2 
76.9 
74.6 
36.9 
24.3 
62.4 

~~!ighl hardness = 't' 3.45 0.87 7.8 51.6 4.88 7.8 19.1 24.4 38.9 
s cc 

Ti-alloy ~"" 3.23 0.85 7.8 51.6 4.88 4.6 20.6 44.9 42.1 
SiC '-' 22 0.35 7.8 51.6 4.88 3.1 7.4(9.6*) 24.0 15.1 (19.6*) 

* The values for the composite target with the ceramics/back thickness ratio 3: I are shown in parenthesis 

mm 
96.3 
100.0 
47.4 
46.0 
8.2 
5.4 
13.8 

8.6 

15.8 
8.5 

280.6 
291.5 
138.3 
134.2 
23.9 
15.7 
40.3 

25.1 

46.2 
24.7 
557.0 
578.5 
274.5 
266.4 
47.4 
31.2 
80.0 

49.9 

91.6 
49.0 
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vp =1500 m/s 

htcr, mm 
(ph )fer 

g/sm2 

58.5 216.6 
60.8 225.0 
29.9 106.8 
29.0 103.6 
14.4 18.4 
9.5 12.1 

24.3 31.1 

15.1 19.4 

16.4 35.6 
5.9 19.1 

170.5 631.2 
177.1 655.9 
87.1 311.2 
84.6 302.0 
41.9 53.7 
27.6 35.4 
70.7 90.7 

44.1 56.5 

47.8 103.8 
17.1 55.6 

338.4 1253.2 
351.5 1301.7 
172.9 617.7 
167.8 599.4 
83.1 106.6 
54.8 70.3 
140.4 180.0 

87.5 112.2 

94.8 206.1 
34.0 110.3 



5. Maps of distribution of microhardness, plastic deformation and plasticity 

characteristic in targets after the impact loading 
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For investigation of deformation mechanism and strain hardening during impact loading and 

penetration, targets from alloys with different types of strengthening were used: steel 40, high hardness 

steel and Ti-alloy. Chemical compositions of alloys are given in the table l. 

Conditions of impact loading of targets from alloys are given in the part l. 

For investigation of the plastic deformation around the penetration channel the incompletely 

penetrated targets were selected. The targets were cut along the axis of moving of the kinetic energy 

projectile (KEP), and the Vickers microhardness (at a load of 2 N) was measured in the cut section. 

Typical maps of microhardness distribution are given in Fig.2, 4 and 5. 

A modeling of the deformation process was carried out by compression of specimens, which were 

prepared from the same steels and Ti-alloy. The specimen size was 5x5x5 mm3
. The deformation curves 

in the coordinates compression stress crcomp - plastic deformation & P are given in Fig.6. The 

microhardness was measured in the specimens, which were deformed to different deformation degrees. 

The dependence of microhardness on the deformation degree is given in Fig. 7 as well. 

The local plasticity characteristic of the material hf£ [65-67] was calculated for every point, in 

which microhardness was determined. 

This plasticity characteristic has been introduced as a part of the plastic deformation in the total 

elastic-plastic deformation under the indenter 

(10) 

Here & P, & e and &1 are the mean values of plastic, elastic and total deformation of the specimen on the 

contact area of the indenter with specimen in the loading direction; &1 = & P + &e and & P ;:::; canst when 

a pyramidal indenter is used for hardness measurement. 

As it can be seen from Eq.(lO), 15H is a dimensionless parameter ranging from 0 (for "pure" 

elastic deformation) to l when the elastic deformation is insignificant. It was shown in [68], that elastic 

deformation is given by 

HM ( 2) --. 1 - v1 - 2v1 , 

El 
(ll) 

where HM is the Meier hardness, E1 1s the Young modulus and v1 is the Poisson's ratio of the 

material. 

Plastic deformation can be calculated from the ratio [66-68]: 
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(12) 

where y 2 is the angle between the face of the hardness indentation pyramid and the loading direction. In 

this case y2 > y1 , where y1 is an appropriate angle of diamond indenter. The angle Y2 for pyramidal 

indenters can be defined from the ratio [66, 69] 

HM 
ctgy2 = ctgy1 -1.77--. 

Ee:r 
(13) 

Here E e:f is the effective Young's modulus of the indenter- specimen contact couple, and 

(14) 

where E 2 and v 2 are Young's modulus and Poisson ratio of the indenter. 

The values of plasticity characteristic 15 H for investigated materials are given in the Figs.2, 4 and 

5. Using the dependence HV(c P) (Fig. 7) as a calibration curve, the value of the conditional deformation 

& P was calculated for every point of target as well. Consequently, the maps of microhardness distribution 

in Fig.2, 4 and 5 are simultaneously the maps of plastic deformation distribution and distribution of the 

plasticity characteristic 15 H . The distribution of microhardness along the lines Oa, Ob and Oc of target 

from steel40 is given in Fig.3, the lines (Oa, Ob and Oc) are plotted in Fig.2. 
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KEP 

Area HV ,GPa &p,% 5H 

2.8 : 3.4 20 : >40 0.89 : 0.86 

2.5 : 2.8 8 : 20 0.90 : 0.89 

2.2 : 2.5 1.5 : 8 0.91 : 0.90 

2.0 7 2.2 0.5 7 1.5 0.92 7 0.91 

1.9 : 2.0 0 : 0.5 ~ 0.92 

Fig 2 The target from steel40, velocity ofKEP V = 420 1n/s. 

The map of distribution of microhardness HV , the value of plastic def(mnation & P 

and plasticity characteristic 5 H after impact loading. 
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4.0 

3.5 

3.0 

2.5 
(\) 

Q 2.0 (.!) 
Oa----------

Oc 
Ob 

~-- 1.5 
:r: 

1.0 

0.5 

0.0 
0 5 10 15 20 25 30 35 

distance, mm 
Fig 3 Microhardness along the lines Oa, Ob and Oc of target from steel40 (see Fig.2). 

KEP 

Area HV ,GPa &P'% 5H 

4.5 : 4.7 > 60 0.83 : 0.82 

I I 3.8 7 4.5 15 7 60 0.86 7 0.83 

3.6 : 3.8 1.5 : 15 0.86 : 0.86 

3.2 : 3.6 0: 1.5 0.88 : 0.86 

' Fig 4 The target from htgh hardness steel, veloctty of KEP V 468 m/s. 

The map of distribution of microhardness HV , the value of plastic def(mnation & P 

and plasticity characteristic 5 H after impact loading. 
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KEP 

Area HV ,GPa &p,% 5H 

3.8 :4.2 7 : 22 0.81 : 0.79 

I 3.3 7 3.8 277 0.84 7 0.81 

3.2 7 3.3 072 ~ 0.84 

Fig 5 The target from Tt-alloy, veloctty of KEP V = 274 tn/s. 

The map of distribution of microhardness HV , the value of plastic def(mnation & P 

and plasticity characteristic 5 H after impact loading. 
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Fig 6 The inf1uence of deformation degree & P on the compression stress cr compp 

for static compression loading for difTerent materials of targets. 
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Fig 7 The inf1uence of deformation degree & P on the microhardness HV 

for static compression loading for difTerent materials of targets. 
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The value of plastic deformation during impact loading of a target by the KEP can be estimated 

from the Fig.2, 4 and 5. It is seen that plastic deformation is essential, and may be equivalent to 40-50 % 

of static plastic deformation for steels. 

In the case steel 40 the deformed zone has more dimension in comparable with zones for high 

hardness and Ti-alloy. The hardness of the deformed zone increases and achieves the value HV = 3.4 

GPa for steel 40 (Fig.2). 

As it is seen from Fig.2, 4 the increasing of hardness around penetration channel for investigated 

steels achieves 50 %, that corresponds to plastic deformation & P =40-60 %. For target from Ti-alloy the 

plastic deformation around penetration channel is lower ( & P ;::,20 %) and at this deformation fracture is 

observed in dynamic and in static loading as well. 

6. The energy expended for the plastic deformation 

The method for estimation of the energy w P expended for the plastic deformation of target 

during impact loading or penetration ofKEP was proposed by authors in [64]. 

The energy expended for the plastic deformation of the target during penetration of the indenter 

may be estimated for every i-region in the map ofFig.2 as 

(15) 
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Here Si is the surface of i-region in Fig.2 with approximately constant hardness Hi , Ri is the 

distance from the axis of the penetration channel to the centre of gravity of the i-region; Ui is the energy 

expended for plastic deformation of a unity of volume in the i-region. 

It was assumed that Ui may be evaluated by equation 

(16) 
3 

where Hi and & pi are the average values of hardness and plastic deformation for the i-region. 

The total energy expended for plastic deformation of target will be 

(17) 

Calculation of w P were fulfilled for steel 40. The kinetic energy of KEP was calculated as well 

Table 5 The energy expended for the plastic deformation of targets 
during penetration of the indenter and kinetic energy of the KEP. 

Material V, tn/s wkJ Wp,.T wP lwk,% 

Steel40 420 2655 1338 ~so 

It is seen that the value of the energy expended for the plastic deformation of target during 

penetration of the KEP w P is equal approximately 50 % of the kinetic energy of the KEP wk. Other 50 % 

of the kinetic energy is expended for the heating, elastic vibration etc. 

7. CONCLUSION 

l. The theory enabling to calculate ballistic limit velocity Vcr of penetration of target by not 

deformable projectile is developed. Calculated and experimental data are in a good agreement. 

2. The semi-empirical formula allowing to calculate ballistic limit velocity Vcr both for not 

deformable and deformable projectile, at different ratio of mechanical properties of projectile and 
target is suggested. Values of hardness and plasticity characteristic oH defined at indentation and 
introduced by authors are employed in calculations for characteristic of mechanical properties. As 
targets we investigated different metals (steels, aluminum and titanium alloys) as well as ceramics. 
As projectile materials we applied soft and hardened steels. 
The obtained experimental results are in a good agreement with calculations made under the 
suggested formula. 
The estimation of critical thickness of target for different types of projectile and various velocities 
of their movement is carried out. 
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3. By critical specific surface weight of targets the investigated materials can be arranged in the 
following order in line with growth of density of target per surface unit (ph t,. (when 

vcr = canst): 

• soft aluminum alloys, 
• high-strength aluminum alloys 
• soft steel, 
• titanium alloy, 
• high-strength steels, 
• ceramics 

4. The maps of distribution of microhardness, plastic deformation and plasticity characteristic in 
targets from aluminum alloys and steels after impact loading were obtained. 
The energy expended for the plastic deformation around the KEP in the case of its stopping in the 
steel targets ( V < Vcr) is approximately 50 % from the KEP kinetic energy. 
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